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PREFACE

During the past quarter of a century the subject of Probabitity
has acquired a new importance in science, partly because of the
more recent stress on statistical laws in mechanies and partly
because of the rapidly expanding use of statistical methods in
medical, biological, engineering, industrial, and social problems.

Writers have approached Probability from very diversey
angles but little attempt has been made at any sort of unifiga-
tion. Ab times it is regurded as a branch of symbolic logic)
sometimes as a series of empirical conclusions based on dxperi-
mental practice. Certain writers see it as a branchwef pure
mathematics, others as a description of a state ofPmind. To
some it is of philosophical, to others of scientifieNmportance.

The authors have taken the view that Probability is an essen-
tial of scientific method, and that a probability estimate, how-
ever it is approached, has to be seen andjutérpreted as a guide
in seientific procedure. Thus these varicus treatments are in
reality partial aspects of the same fopi¢, where in each case the
form of analysis has been decided by the particular scientific
purpose for which the trgé‘f‘l%gnfé}i%%bf)ag  Rétempted.

The present book, claiming to be no more than an elementary
treatment, makes no effoft\o cover all these fields. The earlier
mathematical porti n&‘.zﬁre restricted mainly to simple con-
siderations of Mathematical Probability and its linkage with
Statistics in a ferm’ suitable for non-mathematical students;
hence the inclu%ioh of the material of Chapters ITI and IV. At
the same tiidrthe authors have striven to provide a detailed
criticism\qufthe various self-contained theories of probability
that baf‘t% beent advanced from time to time. This has com-
pelleddtsthem to embark on certain considerations of scientific
ansthod and, later in the book, on more advanced mathematical
problems in Probability, without, however, entering into fields
such as Statistics proper or other branches of physieal science
farther than has been essential for this purpose.

While most of the examples are new, a number have been
gelected from Whitworth’s Choice and Chance and these the
aunthors here gladly acknowledge. 1L

L. R,
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CHAPTER 1}
HISTORICAL INTRODUCTION

Tue theory of probability arises from a number of different
sources. It already manifests itself in cextain practices resem-
bling insurance which were known to antiquity; thus, the
Roman collegium or guild paid a sum of money to the surviving
relatives upon the death of a member, a custom which wag’\
continued by the medieval guilds. In 324 B.¢. a Greek named
Antimenes devised the first system of insurance mentiofiedin
history; he guaranteed owners against the loss of theirslaves sz,
for a premium of & per cent. per annum. The marife ihsurance
trade likewise originated in Greek times with €he practice of
bottomry or sea-loans; when a merchant send §5 cargo abroad
he received an agreed sum from a hanker which he repaid with
interest if the cargo arrived safely, but'\’m}-ained if it failed to
do so. It seems clear that in such basgains the prevailing rate of
interest was high. by

The early history of insuragge’docs not appear yeb to have
been thoroughly explored; tha P RN Ph& P exchange is, on
the other hand, well decuihented, In the fifth century B.C.
banks had already beelj: established in Athens. We know that
by the end of thé&hirteenth century the Italian and, more
especially, the Fiorentine merchants dominated the entire trade
of Europe, andAhat in 1350 they had banking establishments in
most of the,Bliropean capitals; their power was such that they
were a{:e;‘tb finance wars, control international exchanges, and
dictat@uhonetary policy at large. It may be added that at this
tim&% regular rate of exchange began to be quoted in London

p '%&Ween English and Flemish currency.

" Heneeforward financial operations in Europe ook on some-
thing of their present-day character, including the deliberate
policies of inflation and deflation with which we are only too
familiar. Tn this connexion we may note the steps taken by
Sir Thomas Gresham, in 15523, to restore fallen Fnglish credit
by pegging the exchange, seiling foreign currency in Antwerp,
and placing restrictions upon the trade with Flanders. Al these

operations involved actuarial problems in probability, however
4260
B



2 HISTORICAL INTRODUCTION Chap. T

rudimentary. The methods of insurance, which date, as we
have seen, from very early Greek times, developed without any
aid from the actuarial principles with which they are nowadays
associated: these latter grew out of a different order of ideas,
whieh we have now fo consider.

Tt is not until the Renaissance that the subject begins fo
re-emerge in a new setfing. During the sixteenth and seven-
teenth centuries a great deal of the leisure of the European
aristocracy was aoccupied with games of chance and gambling
in general. This class did not number among its membersany
mathematicians capable of handling the problems that natiwally
suggested themselves, but nevertheless it happened that from
time to time problems of chance were passed on te ’!:hc mathe-
maticians of the period. Perhaps the only exception to this
rule was Cardan, himself an inveterate gambler’(notorious for
his theft of Tartaglia’s solution of the cubic) who, somewhere
about 1530, wrote a small gambler’s maﬁk{ml; the book was not,
however, published until 1663, Galileo (1564-1642) had his
attention directed by an Italian ngbléman to & problem in dice,
the solution of which is the first ¥éeorded result in the history of
mathematical yrolahikitiorary org.in

The problem is as followg\Whereas when three dice are thrown the
numbers ¢ and 10 can egch be obtained in 6 ways (different from each
other), yet it is foun f%‘mt&ctua.l experience that 10 appears more often
than 9. How cansthis\Be accounted for? In his work (which did not
appesr until 1718}, Galileo makes an analysis of ell possible cases and
shows that, of 2} possible ways of throwing thres dice, 27 are favourable
to the 10 anch35 to the 9. Nowadays we should solve such a problem
by the n;ge‘b{rod of Chapter VII; it represents the first successful attempt
to e:fgle{ "’the frequency of appearance of certain groups of numbers by
an a:;fa,lyals of the possibilities that might arise.

W Twelve years after Galileo’s death a correspondence began
Jetween Pascal and Fermat which gave the first real impetus
to. the theory. The Chevalier de Méré, a French gentieman
with mathematical interests, propounded certain questions to
_Pascal, who communicated them to Fermat. Of these the most
Important is the famous ‘Problem of Points’ which in varying
o T o e o
follows: Two Pla.yérs witﬁ & el poated by' Pa'scal o 1-654’ o

) qual chances of winning a point, are



Chap. I HISTORICAL INTRODUCTION 3
playing a game for three peints. If they wish to break off the
game before the end, how shall the stakes be divided? Pascal
solves this problem and later enunciates without proof the
results for a game for n-|1 points in the case where one player
has already « points and the other none, and where one player
has one point and the other none.

Fermat's solution of the problem, given at the same time, ig
for the case where onc player requires 2 points and the other .
3 points, to win; his method is essentially the same as that given
later in Chapter V. Pascal applies this method to a sinilas
problem in which there are three playcrs. In the same yedf was
printed his T'raité du triangle arithmélique, which is-ghe earliest
treatise on the theory of combinations, and cotains, among
other things, the familiar formuia for the binotmial coefficient
n(,. Pascal uses the results of this work tg\selve the problem
of points in the case where one player req((ires m points and the
other » points to win. P\4

In all this we sce that the setting of the problems is a
gamblet’s one, although both Pag’gaf and Fermat are interested
primarily in the mathematical|#nalysis. In this connexion we
may note a distinetion betmdbnadlibrprggngasnof the theory in
Catholic and Protestant. isbuntries; in the latter the interest was
concenirated on qui o'\&ifferent topics—thus, Newton, who was
born the year Galiled died, seems hardly to have conccrned
himself with ql}@ﬁi’bﬂ& of this nature. Almost the sole exception
was Huygens who in 1657 produced the first treatise on gaming
and dicing*problems. This remained the best aceount of proba-
bility undil the advent of James Bernoulli, Montmort, and De
Moiyte, all citizens—at any rate by birth—of countries in which

y gegﬁ,l\iﬂing was not frowned upon, that is, in which the Catholic
fotidal aristocracy was miot yet restricted by the rising Puritan
class of burghers.

To us the interesting feature of the development of proba-
bility at this time is the fact that it began to be cultivated,
apparently on a different basis, in England and Holland. These
countries were Puritan because the burgher class, the towns-
men, had already succeeded in asserting themsclves; they were
more interested in problems of trade exchange and questions
related to the growth of town population. Thus in 1662 we find
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Captain John Graunt devising & method for utilizing the weekly
retwns of deaths in the City of London to determine the growth
of the capital, while in 1671 John De Witt published researches
on the mathematics of annuities, in Holland. Halley the
astronomer published a memoir in the Philosophical Transac-
tions for 1693 based on the tables of births and deaths for the
city of Breslau during the period 1687-91. He gives a table
showing the numbers of the population aged » years, and shows,
how to find the value of an annuity on the life of a person of
given age. He constructs a table of annuities for every fifth'yéar
of age up to 70 years; and he considers also the quektion of
annuities on joint lives. N

From the end of the seventeenth century to the'middle of the
eighteenth century was one of the most fertile) periods in the
history of the purely mathematical theory, “During this period
James Bernoulli (1654-1705), Montmdrt (1678-1719), and
De Moivre (1667-1754) between thém)developed the greater
part of the elementary theory as it,'ié Jnown to-day, illustrating
their work throughout by prqbléfms in games of chance, from
which it originated. ONT

To James Bernadbralibe s &5&1%on of the problern of points;
he obtains, substantially ®y ‘present-day methods, the probability of
throwing a given number with » dico; and he solves the problem of the
*duration of play’, th‘s\t\irs, of finding the probability that a player should
win all his opponefit’s money, given the playors® initial eapital and their
respective chap@sbf winning a point. But his remarkable contribution

to the theor%tigthe theorem known by hig name (pp. 58-60), the second
part of ‘yvlg:ig consists of an approximation to a probability by purcly
a]gehz:?bQ atethods.
}i}lﬁe work of Montmort goes over the familiar ground of dice
. (ana card problems; in addition it comprises valuable additions
) Yo the theory of permutations snd derangements, including the
sofution of the ‘problem of {reize’ (p. 97), and contains the
elements of finite differences and the theory of rocurrence
relations. Many of these results were arrived at independently
by De Maivre to whom, moreover, are due the formulae for the
chance of throwing a given numh_ér with an n-faced die, and that
of an event succeeding consecutively s given number of times.
To De Moivre is due the idea of approximating to probability
formulae by means of logarithms; in this connexion he digeusses
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the approximation to the value of the binomial coefficients
oceurring in Bernoulli’s Theorem, and gives a formula which is
practically equivalent to Stirling’s Theorem {p. 67); it would
appesr that this theorem had been diseovered at about the same
time by Stirling himself.

We thus sce that, in the effort to discover new mathematical
methods to handle problems in probability, there emerged a
great deal of work on permutations and combinations, finite,
differences, recurring series, the idea of summation of mﬁmte
series, and many new trigonometrical formulae. These gre
still in the main & continuation of developments in th¢ Latin
countries: the problems dealt with were those that a*rbse from.
the way of living of the aristocracy. But a new penod was
setting in, one of criticism and examination prelmrator} to the
French Revolution of half a century later. Welean observe the
beginnings of this phase in the controver sws}bhat arose between
Leibniz and James Bernoulli; the ]at’séw had attempted, by
inverting his theorem on the probahahty of occurrence of a
group of events, to determine _the *probability of the event
itself. Thus what later became &“major issue, the “probability of
causes’, was raised in rnat\fxclgg't?éﬁ'léﬁwl?ﬁﬁdgophmal form for
the first time.

Meanwhile, under they \hﬂuence of the work of English experi-
mentalists, mathem\hcal physicists, and astronomers, the same
problem arose in@mew form, one associated with what is called
the ‘theory of\errors, the reasons that can be adduced to
explain Why‘sets of observations of the same measured guantity
are alwayfs, 0 some extent, discordant among themselves. This
was a,i}foblem of theoretical science, arising from the needs of
exp@rafncntal practice, and it was one that was certain to

(intrigue natural philosophers studying sclentific laws from a
thechanistic standpoint.,

From the scientific point of view Thomas Simpson, in his
Miscellaneous Tracts (1757), was the first to examine critically
the implications of taking the mean of a set of astronomical
observations of the same event. Thus this theory, now an
integral part of the subject of the significance of errors, owes
its origin to astronomical needs. Naturally, the French ex-
perimentalists were by now equally concerned with the same
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problem. In 1770 Lagrange published his lmemoir on the. method
of taking the hest value from among a series of chservations.
This work, which had in part been anticipated by Simpson, discusses
the probability that the ervor of the mean of n observations should lie
within assigned limits, and determines the most probable crror of the
mean. Again, if it is known that the errors in a set of observations
must be one of the numbers +1, +2,..., £m, and that the chances of
these errors are equal, or proportional to given quantitics, Lagrange
shows how to determine the probability that the error of the mean
should have an assigned value or lie within given limits, QY
All these results are obiained by expansion of multinomial
expressions and other purely algebraic processes; butat“the
game time a new conception was introduced by Simpson and
Lagrange which proved later to be exceedingly ferbife in analysis
—the idea of an error curve. For reasons to he ‘e;'(plained in this
book, ‘errors’ or divergences from the ‘trieNyalue necessarily
consist of a discontinuous set of data;hit apart from the
caloulug of finite differences, which was'still a comparatively
new and little known subject, the whole field of mathematics
concerned itself with ‘continuops’."phenomena. Thus, in the
face of mathematical imitations;*the facts regarding the nature
of error were altetbiayd ALY &R both Simpson and Lagrange
introduced the notion“of‘hbntinuous variation in error. The
analogy did not progegd'very far; but nevertheless, the concept

of errors in a eonki{gmim z with a probahility funetion ¢(x) had
now found its plac

In 1778 Batdel Bernoulli published a temoir on errors of observa-
tions, in wl{igh he remarks that the common method of {reating dis-
cordant,abservasions, by sssuming that the true observation is the mean,
presuppeses that they arve of cqual weight, whereas small errors are
surcly ‘more probable than large ones, Bernoulli therefors pruposes o

mgasure the prabability of an error = by the number W(rF—x?), where

e

P/ is e constant; then the best value @ to be obtained from & set of

c¢h makes the product
.J{rs——(mlmx}"‘}\){ﬁq‘(fzz*m)z}... a maximum, In effect Bernoulli thus
assumes the probability curve to be a circle and applies to it the method
of inverse probability (p. 164},

The idea of continuity in connexion with probability shows itseif in
other researches of Danjel Bernoulli, in which his purpose ie to demon-
atrate the use of the differential calculus. For example
t-b_e probeble distribution of liquid in three umns ,
different liguids, if for a time ¢ liguid is allowed to

he discussea
initially containing
flow from the first
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to the second, from the second to the third, and from the third to the
first. We may also note here the work of Buffon who in 1777 applied
the notion of probability to geometrical problewns; thus, if a coin is
thrown on a table ruzled in squares or equilateral triangles, it is requirod
to find the probability that it will fall clear of the bounding lines.
Buffon's most famous problem {p. 86}, requiring the uso of integral
caleulus for its solution, is found in the same work. It is of interest to
note that the result has several times been used to calculate cxperi-
mentally the value of 7 with, however, suspiciously good results,

The critical work of the French Encyclopédistes, to which we {
have already alluded, did not proceed far, conducted as it wag
by individuals who were for the most part non-mathematidiatia
and who failed therefore to distinguish between those cons‘idera-
tions which are mathematically and those which afe socm]ly
important. Even a distinguished mathematiciag like D’Alem-
bert, who directed his criticism at the fundamental definitions
in probability theory, succeeded only in arsiving at the most
preposterous conelusions. The Marquig{de Condorcet dealt
with such questions as the probability bfielection of a candidate
by a given number of voters, and the’pi'oba,bility of a tribunal
arriving at a true verdiet in a trials In view of his faith in the
nocessary progress of ﬂiy\hdhfm&“i%é{?ﬁmt‘&s happiness and
perfection, it is one of the irotites of history that he himself was
condemned by the rcvolu{ionary tribunal.

It is during this Od that the problem of ‘inverse proba-
bility’, first considgre by James Bernoulli, again shows itself,
in two posthun}({us memoirs by Bayes which appeared in the
Philosophical Lramsactions for 1764-5, Bayes gives, in geometri-
cal form, thefheorem that, if an event has happened p times and
failed ¢ thﬂes the probability that the chance of success will
he beth'en the values a and & (all values being equally likely) is

f :ﬁ”{('l —x) dx / j' xP(1—x)7 dx. Bayes then proceeds to evaluate
[ L]

these integrals by approximation. It would be interesting to
discover whether the investigations of Euler and Legendre on

1
the Beta function [2?(1—x)?dx, which began shortly after
1]

1770, were suggested by the work of Bayes. For us, however, its
importance lies in the evidence it affords of the convergence of
the subject-matter treated in Kngland towards that of France
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on the threshold of the Revolution: this, of course, is only a
slight aspect. Bayes, himself a clergyman living in the middle
of the eighteenth century, turned his attention to these ques-
tions, directly or indirectly, under the influence of a sceptic like
Hume (1711-76) or an idealist like Berkeley (1685~1753). These
latter were themselves working on the ideas of Locke (1632-
1704) and Hobbes (1588-1679). Hume, we know, made frequent
contact with, and was much influenced by French writers; thus
it was in this atmosphere that Bayes attempted to state g
symbolical form the relation between cause and effect/as it
shows itself in probability. It is worth recollecting thatsdiverse
as their ontlooks may be on other matters, Locke, Berkeley, and
Hume are at one in their distrust of mathematigal reasoning
and tend to rely on probability rather than op.éertainty.

If any single person has to be accorded the merit of syu-
thesizing the development of the subje¢b.at this stage, that
person is Laplace (1749-1827) who, liyihg'and working through-
out the revolutionary period, drew bogether the theoretical and
philosophical conelusions which had emerged from the problems
of gaming on the one hang, agdfrom the discussion of experi-
mental errors, on fhe.atharrdbagidition Laplace established the
connexion between these and the corresponding questions in
mortality and life tables which lie at the basis of insurance
statistics. Tt is héré #lso that the first specific statement of the
Error Functiopnjs formulated; and although it was later dis-
covered indepésidently by Gauss (1809) we can accept the view
that all fheessentials of probability theory and most of the
deductions from it are contained in Laplace’s great synthesis.
Fr?m\ his time onwards i was inevitable that developments in
any. one of the fields—philosophical, logical, mathematical and

::g}xperimental, industrial, financial, actuarial and statistical-—
/ were bound to affect each other and to grow from the same

broad prineciples. One of these principles, established by La-
place, is the method of Least Squares, which he deduces from a
set of very general assumptions. He shows, in fact, that if we
suppose the mean of a set of observations to be the most prob-
able value, and positive errors to be as likely as negative ones,

the error function for the observations is of the form .5 e~
m
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Actually, the method of Least Squares had previously been
used in astronomy by Euler and Gauss, but Gauss was the first
who endeavoured to justify it by an appeal to probability
theory.

The beginning of the nineteenth century marked a change of
profound importance, if not in mathematical methods, at least
in the subjects to which these methods were applied. The
Industrial Revolution had already set in, with its modern,
problems of factory production and increasing populationss
from these emerged a vast array of social problems whichin
regponse to a slowly developing public conscience were fgcom-
ing the subject of closer and more refined statistical“mvestiga-
tion. Thua 1801 saw the initiation of the Engh&h ypopulation
census. A short time later the growing Trades Uion movement
began to maintain & continuzous index of unemployment figures
among its members. Simultaneously, undel}thc drive of indus-
trial needs, and with the funds allotted* 1}) universities and clse-
where to experimental studies, scientilie'investigation proceeded
apace and with it a whole range efifiew problems emerged,

In a sense science was, hQW@vér, largely in the engineering
phase, and while questionsofbrpdibmanytel gifor were still dis-
cussed, the scientific outiéok was highly mechanistic, with little
regard for any considePation of statistical qualities in Nature.
But the Industrial Revolution, which brought about an immense
increase in proddction, was one of the driving forces towards
foreign tradephiére, then, on the side of insurance a new impetus
was given b the development of the subject, in a field where
mechanidm had no place and average changes were the qualities
that m}uu‘ed study. We therefore find during fhis period a
dew\elopment of those methods of a statistical nature which are
{Teqtired in commercial expansion and social investigation.

Nevertheless, experimental work was proceeding on chemical
and physical principles; in particular, interest was focused on
the characteristics of gases and gas mixtures, and the pressure
laws governing them (possibly under the influence of the new
uses for ilumination to which inflammable gas was being put}.
As early as 1660 Boyle had discovered his gas law from entirely
experimental considerations; the idea that a gas, impingeing
on an obstacle, consists of individual particles, and that
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the pressure it exerts results from this mutual impact, had
been noted many centurics before, and various unsuccessfol
applications of the idea had already been made by Newton. In
1738 Daniel Bernoulli showed that Boyle's Law follows from
the hypothesis that the gas consists of a large number of moving
particles, and that the pressure arises simply from that cxerted
by the gas on the wails of the containing vessel. So the position
remained unti! the turn of the century when, as we have indi-
cated, attention was drawn to the properties of gas mixturcs,
Thus, in 1802, Dalton enunciated his law for the pressue ol
gas mixtures, basing it on the tacit assumption that the fitotion
of all the particles involved was uniform. By the middie of the
century Clausius {1847) and Joule and Kronig (18;27} ad shown
how to express the pressure in terms of the.m@an velocity of
the gas particles. \

Meanwhile, the philesophic problems a;s’s?&’iated with proba-
bility, which had emerged from theswwtings of the Encyclo-
pédistes, were being examined andiéxfended by De Morgan,
Venn, Boole, and others. The la%36f Laplace-Gauss was well
accepted as the necessary disteibution function for a combina-
tion of ‘randem dacioibraREEY&60 Maxwell was therefore in a
position to apply theseddeas to the random motions of gas
molecules, and from this‘there rapidly developed an elaborate
statistical theory oFgases.

We should note)that this marks a cuhninating point in the
theoretical dgwélbpment, in the sense that we have presented
& new clags, "of problem in scientific method. For, by his
analysis\ Maxwell showed how the characteristics of a large
masp,gﬁ the laws exhibited by it in various circumstances are
1:elg;té’d to the corresponding characteristics of particles at a
“Jower’ level. Although since that date many fruitful develop-
nents of Maxwell’s theory have oceurred, the next stage in its
application was not until the beginning of the twentieth century,
when the experimental discovery of still more elementary forms
of matter (electrons, protons, neutrons) threw up a similar type
f}f .problem for study: namely, how to express the character-
istics of the atom or molecule in terms of the more elementary
characteristios of the electron, proton, ete., on the assumption
that these show themselves as the result of statistical combina-
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tion. We may put it shortly by saying that the step from
Newtonian theory for the motion of & body to Maxwell's theory
for the characteristics of a gas is similar in type to the step from
atomic characteristics to the quantum theory.

It remains to point out that there exist at the present day
groups of investigations of a statistical nature arising from
insurance, actuarial analysis; industrial statistics and theirs
application $o production and distribution; the statistics of peWw
social problems and the statistical approach to (1ucst-imigﬁh
purely scientific inquiry, inciuding genetics, quantum méchanics
and mathematical logic, and these, admittedly nequu‘mg
specific treatment, are usually dealt with as/if>they were
separate and distinct ficlds. All these developrients require a
new unification and synthesis, such as was quormed by Laplace
in his day; the efforts that have been made to this end, merely
by the production of a theory of pl;ts’t:);bﬂity as an extended
branch of logic instead of as an actuaband vital part of scientific
process, must, When seen in p@i’éi)ective with this historical
movement, fail in their funcjsip;ﬁf That unification has yet to
be found. N

iy w.dbraulibrar y.org.in
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CHAPTER II
THE SCOPE OF PROBABILITY

1. The meaning of chance

ALL events in the universe are interrelated and affect each other
to a greater or less degree; for example, the reader of this book
will be affected by all the factors which brought the book into
existence, and these range from the manufacture of paper and{
ink on the one hand, to the history of the anthors, their parcats
and teachers, on the other, Thus all events have an enophdas
number of causes, some more important than others, 1f ibHows
that, in any attempt to obtain information about tHem, some
selective principle is necessary in order to eliminate what we
suppose will turn out to be the less relevant fagps'in a particular
case; indeed, by the mere use of the word ‘event’, we are focus-
ing our attention on the thing thut interesté s, all other things
being for the moment irrelevant. PN,

Science is concerned with partigul'ar' kinds of events which
interest us. The procedure which éharacterizes scientific method
consista in is‘fﬂ’ﬁ‘ﬁ’iﬁé’ 5’%%5%&?@&%%63 of eventé, that is, events
which appear to form a lo,gi}é&f chain when interpreted in the
light of eertain fundamental assumptions. Thus, a ball is pro-
jected into the arr ﬁi}&h.h specified speed: it rises to a certain
height and redches the ground at a certain distance from the
point of projection A scientific study of this projectile attempts
to connect this sequence of evonts so that one or more of them
follow as :a..go}ical conclusion from the others. For this purpose,
in t-he\fﬁet place we ignore all other events except these, e.g.,
we ignore the temperature of the atmosphere, the possible

’.&ief&bts in the apparatus used for the projection, and the
personal views of the experimenter; and in the second we assume
the operation of some guiding prineciple, frequently described as
a ‘%aw . of force’. Buch a problem belongs to the science of
rational mechanics, which by postulating laws of force purports
to (.ieduce mathematically the effect of a given system of forces
acting on & given system of bodies. In other words, one of the
aims of mechanics, as of any other branch of science, is pre-
diction, (What interests us, in a sequence of events, is the way
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in which they can be grouped together to facilitate prediction

and thus effect control over Nature.) The accuracy of the

prediction will consequently depend not only on the selection

of events, but also on the guiding principle which we werce led

to make in formulating our science. We are not justitied in the

first instance in assuming that this process will lead to results

which agree with chserved facts; if, however, we wish to

gsharpen the aceuracy of our prediction, it is clear that we caj
do so by making a study of those cvents which we rejected pre
viously as being less relevant to the problem. This miglﬁs.zifm
necessitate a change in our guiding principle. Thix shappening
process may be repeated again and again, At any stageyer define
the difference between the evenl predicted and thegetual observed
occurrence as o chance effect. While one field 5t )scicnee, which
we have called a rational system, occupies\itself with predic-
tions which involuntarily exclude or"i,g\lore these chance
differences, another field takes thept dd its object. of study,
nnder the name of ‘deviation’ or ‘experimental error’. It is
with this that the caleulus of pi'bbabilit-y ig concerned in its
application to expeﬁment-%m"ggﬁtiigghbmr orgin

For certain purposes of ahalysis, 8 guiding principle is here
again frequently assumeédy when ‘chance’ is conceived as itself
the result of & larg%;{l‘uﬁ}ber of equal elementary causes com-
bined together. ka the examination of this theory, points are
often illustra,tf:(zt'b‘y madels and analogics such as those dealing
with balls cHoseh from urns, each such choice being thus re-
garded as-afsimple, elementary cvent. .

We guust begin our study with a word of warning. The
abgp;&pt theory of probability, which seeks to compre hend those
JAacts which elude the ordinary rational systems, must itself
of necessity be a rational system, working by mathematical
methods and based on certain assumptions. So it frequently
happens that problems which appear to be about physically
real things, such as balls extracted from an urn or a coin tossed
in the air, have nothing specifically ‘real’ about them, in rela-
tmn. to balls and.urns: they are simply abstractions fitted into
a Pmture to assist the mathematician. The justification for
using such a_,bstract?ons in our problems cannot rest finally on
any theoretical basis alone, but in the last analysis has to be



14 THE SCOPE OF PROBABILITY Chap. T1,§ 1
found from the experimenter before or after t-}.le abstractions
have been applied. In any case we must distin gu.lsh between the
mathematical problem of choosing a mathematical ball from a
mathematical urn—an imaginary problem—and the (I-f.‘-f.’uﬂl urn,
' the balls contained in it, and the actual process of choice. The
former may guide us in analysing the latter. S
An example will make the need for this distinction clear.
If 100 persons each have to choose a number between 0 and 9
inclusive, how often will the numbers 0, 1, 2,... be choscn.? ,
The abstraction which a mathematician might make from F‘kllﬂ
problem would leave him with a purcly mathematical question
concerning arrangements, the answer to which is, theEt' &4 i!l.’l i?f
the numbers will ‘probably’ be chosen ten times. Bith this is
not the real question; what we want to know ’ia;h'ow peo]‘ule
actually choose, and here we are faced by condiderations of a
psychological and social nature. In point offe‘@s it has been found
by actual testing of a large number of indigiduals that 7 and 3
are much more frequently chosen than'apy other number; these
numbers both, of course, have a long historical and religicus
tradition behind them. As we seeifrom such an example, the
question whetherdthe libEtractien may be validly applied in a
given case is not to be begged™ The mathematical problem deals
with the number of arfomgements that can be conceived as
possible in the circggl&t?a-nces, the physical problem with the
groups of these which actually eome into play. We can develop
a mathematicaltheory of arrangements but a separate justifica-
tion has to be'found for it if it is to have practical applications.
Thus, the,:n}rifhematician may postulate that ‘an event can
happenNn’ two different ways’; whereas the physicist knows
that ib Eoes happen in one way only.
At the above problem we recognize #wo questions inherent in
Cthé theory of probability: a mathematical question concerning
possible arrangements, snd a physical question concerning
actual choice or action. There is also a third kind of problem
which we now consider. Most human beings, even if they are
not scientists, analyse events in a rational way, that is, they
recognize order and recurrence and are so led to develop a sense
of expectation as a subjective reaction. If we study a person
scientifically we may ask whether his expectation of an event
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i justifiable, that is, whether his past experience is sufficient to
produce the expectation that would correspond to the reality
which the future will bring forth. Fer instance, if one wakes up
in the morning and hears a cart rattling in the street, there
cames the thought, ‘I expect that is the millkman’, or else ‘Tt is
probably the milkman’. Obviously it is either the milkman or
it is not, and it is one’s past experience, in which one’s expecta-
tion has sometimces been verified and sometimes not, that detens
mines the strength of the expectation. Whether that expectas
tion will be verified or not will depend on how far our psycho-
logical reactions conform closely to the underlying proéesses of
the external world. 'We see, then, tha$ such & questimi i not to
be decided by a study of all the possible arrangements which the
Tuture may conceivably bring forth: we cannt thus be sure,
without elaborate investigation, that psychelegical expectation
iz itself a sure guide to future oceurrenge™

To sum up: in our analysis of situatidns relevant to “proba-
bility’ we have discovered three pasmble fields of study, all in
some way interrelated and each g p&rtlal approach to the general
problem: \

{1} a mathematlcal the%i‘?"(ﬁh{f‘fﬂﬂgéﬁ&b?}t&m

{2) the frequency of aftual oceurrences;

{3) the psy‘chologiq&l}expectation of a participant.

Problem (2} is thevone which arises in actual practjce, when
in deseribing thé ‘eourse of past events we attempt to predict
the future: in 4his respect 1t does not differ from every other
experimengywhich is always concerned with the past as a guide
to thesfature. Problem (1) is8 a mathematical discussion of
abstractions which may be useful in (2) if they are shown to be
rele\fant while {3) represents the subjective state of a person

W tho possibly makes a rough use of (1) and {2) when he is faced

with the events in {2).

In (1) the conception and practice of chance do not oceur:
every problem must be precisely defined and has a preeise
answer. For example, we may ask, out of a pack of 52 cards,
what proportion of all possible groups of 13 will contain 4 aces ?
Here no question of chance arises. In such a problem the exact
number of cards, and the kind of hand, are specified: there are
no ambiguities in the situation—the 52 cards and the 4 aces
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are isolated in an abstract way from all the rest of the universe:
in short, they are given. Any actual process of selection is
deemed irrelevant, and the answer is unique. Precizely the
same situation arises with a geometrical problem: thus, we are
given a triangle with certain properties and we proceed to
deduce certain consequences. On the other hand, chance, us we
have defined it, enters inte (2), and again in (3}, since the
individual concerned makes his own analysis which is necessarily
partial; but what is chance to him need not be chanee to the
" seientist engaged with problem (2). O\
"N

s W

Chance in Scientifie Observation

A scientific observation depends not only on inst-i'ﬁments but
on the circumstances in which they are used—faf example, the
individual who performs the experiment, the emperature of
thelaboratory, and so on, Hence the resu},t&ibpend, tosome ex-
tent, on the differences between individitals. The object of all
sclentific experiment is to obtain okjective information about
the world: by objective information ‘we mean information that
can be stated in a form indepgndent of the particnlar experi-
menter andwhisf-ﬁﬁﬁ’s}jlmv&ﬁe%tg'k%e call this information n-
variant to the individuald

Suppose that we wigh'to measure the fength of a desk: what-
ever definition of ‘fength’ we may adopt, if it is to be of any use
for scientific purposes it must be invariant to the obscrver. But
one observepagplies a measuring rod to the desk and finds that
it records; 2541 inches, another finds instead the reading 25-2
inches, & $hird 24-9 inches, etc. What then is the length of the

_ dee:k? t the end of such a series of observations a scientist has
imlis possession a set of numbers, which represent all the
(\measurable information that he can obtain for his purpose. He
has then to say to which, if any, of his numbers the term ‘length’
will be applied; the differences between the selected number
{the ‘length’) and the rest he assigns to ‘chance’. They are
presumably due, among other things, to the cbserver who, so
far a8 an invariantive statement is conecerned, is a chanee one,
irrelevant to the issue. The chance differences are said to be
‘errors of observation’; but in effect such a term is siraply a
weans of grouping together all that reraaing after the rational

7°%&
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abstraction, which has been called ‘length’, has been made. In
this way the idea of chance becomes identified with the cause
of so-called ‘cxperimental errors’: the one implies the other.
The definition of length really speeifies the method of isolating
the experiment from the rest of the universe in an attempt to
obtain objective information and to build up logie of science:
the ‘crrors’ represent the real connexion (or patt of it) betweent
the isolate and its residue with respect to the universe.

From the illustrations we have given it wili be ohserved that
the difference between the mathematical and the physical
approach to a problem is that, whereas in the former the feld
of discourse is defined in advance, in the latter jahtf"oprimary
object of our inquiry is to find ib. A physicist wiig}s studying
the properties of matter discovers that it can o8 broken down
into electrified particles; thus he has nog found a field of
investigation. The mathematician can noW begin his analysis
with the statement: Given two isoluied cle\triﬁed particles inter-
acting in a given way, can their future’behaviour be predicted ?
Such behaviour can then suggestia new field of investigation
0 the experimenter who, up{il%ja’ the mathematician, 18 never
‘given’ two isolated elect¥iffedipatidhesry ovg.in

Thus in the one casedd® hathematical field is postulated and
we examine its 10%”&1’ implications: in the physical problem
the make-up of the world itself is the unknown, and the object
is to discover whaw'in fact is its structure. In practice, however,
both physicits “and mathematicians work hand-in-hand and
supp]emcnih}éch other, as shown in the above example. The
subjec\tﬁéf ‘probability, therefore, to be complete, has to play
its parb in both fields; the mathematician has to forge an instru-

, méﬁﬁ which the experimenter can use in practice.

2. On the definition of probability

Definition of Mathematical Probability

We propose in the first instance to define ‘probability’ in a
purely mathematical sense, that is, in connexion with problem
(1). The definition we give is the following:}

‘If there is a group of N lefiters consisting of n, letters a,, n,
letters a,, ..., and 7, letters a,, the probability of a letter specified

+ See also Peano, Rend. Accad, Lincei (5), 21 {1912),, 429,
4260
¢
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as helonging to the whole class @,, @y, @, being a letter
a, 18 n N

Having posed this definition we may legitimately ask whether
it may be applied in a particular problem, that is, whether the
definition of probability has any rclevance to an actual experi-
mental casc. For instance, if a penny is tossed, what is the
probability of a head? We can construct a model problem
which we imagine to be like it by making correspond the word
‘head’ to the letter 4, and the word ‘tail’ to the letter a,, whencé\
we obtain a mathematical solution; we replace the real penny
and the action of tossing by two arrangements which wé\iiay
call either ‘head and tail’ or ‘e, and @,’: in this way the-actual
penny no longer concerns the mathematician. "G

But this gives us no definition of probability{df a physical
event, such as the tossing of a coin: our knewledge of such an
event implies knowledge of the circumstancesin which the coin
is tossed. An experimentor who studiesithe problem might ask
himself how frequently the head appeats: he might study the
detailed process of tossing but Wh@ther he is entitled to make a
precise prediction on that is an ﬁh’%’ matter. An onlooker might,
i€ interroga%ﬂ,‘“’rﬁﬁﬁ’Lﬂ]lagaﬂ%é{igﬁnd tails are equally ltkely: his
answer emerges from a cgllettive experience, a result of having
seen actual pennies spurd, To bring the term *equally likely into a
mathematical definition would be to confuse (3) with (1), just as
o use the term ‘equally frequent’ wounld be to confuse (2) with (1),
Definition of Statistical Probability

We deffifé a class of event by a distinguishing quality of that
class,.%g.'the event known as traffic accidents: these grow in
nugiber with time and will be referred to as a population of

. traffic accidents. At any given moment the ratio of fatal cases

Jto the total number has a certain value which itself in general
varies with time; this ratio we call the statistical probability of
fatal accidents. Tts importance les in the practical fact that
it is used either as a guide to prediction concerning the number
of such cases in the future, or as a factor in determining how
we can attempt to diminish ther.

We note two points of difference hetween this definition and .
the preceding. Tn the latter the population of cvents whose .

£
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arrangements we considered was in general finite and deter-
mined, and the probability of any subclass was a matter for
deduction. In the case of statistical probability, both the popu-
lation and the subclass, although defined in Nature, are not
initially bounded in extent and, in fact, they grow with time.
The significance of the probability lics in its application to
future memhers of this growing class; thus the application is
essentially of an inductive nature. This is not to say that the,
two methods of approach have nothing in common; when w8
come to discuss what is called the significance of a statiktigal
probability it will be found that the mathematical defiition
affords us an idealized standard against which thegigrificance
may be measured. Statistical probability finds itg@pplication in
many branches of insurance, in the analysis af\demographical
statistics, and plays a part in such natutal phenomena as
meteorology, where the deductive methads of physical science
are not, yet sufficiently precise to enablesatisfactory predictions
to be otherwise made. O

A priort Probability
There is a form of stattAT PHTIBMRES Which appears in
the literature of the suliject under the name of a priori prob-
ability. Let us suppds'e\, for example, that we are examining
the probability of %an individual being killed by traffic in the
strects of a busy pown. Although the actual data from which
the statisticil‘probability curve could be drawn are not avail-
able, it is mevertheless possible from general considerations
based A dur knowledge of the circumstances and the impres-
siorls,f“\e have gained from others’ cxperience, to construct a
probability curve which will at any rate serve as a first approxi-
(“miation to the truth. Thus we know that between 8 a.m. and
10 a.m. many people are in the street on their way to work, and
that between 4 p.om. and 6 p.m. they are returning home.
Moreover, we may expect that the ordinary traffic of the day
is also augmented during those periods by the cars belonging
to business men. Accordingly, most people would agree in pro-
ducing a curve like that on the following page. From this we
can determine an @ prior: probability; its significance lies in the
fact that, if we wish to use it, it gives us a first criterion for
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judging whether a bateh of fatal aceidents occurring, say,
between 2 and 3 in the afternoon can be regarded as normal
or not. Thus it enables us to make a first rough estimate of the
probability of obtaining such a sample.

Mo of accidents

It is, of course, admitted that the.details of the probability
eurve in the figure will vary with the'person who constructs it,
but there are cases in which nessuch differences arise. For
example, if a penny is tossed, &ll will agree that on the basis of
past experience-tharaupitioes, ;ﬁﬁﬁdﬂility of obtaining a head is 3.
This does not rest solelf™on the mathematical ground that a
penny has a head apd'a tail, but on the additional fact that
pennies do indeedyou the average, fall with equal frequency on
head and on tail'\If the general experience of tossing coins were
sufficiently exdet and had shown that in fact heads appeared
51 times ina-100, the @ priori probability would be accepted as
5 W{Z@ﬁaﬂ see later, when dealing with Bernoulli’s Theorem
on the mathematical probability of obtaining certain propor-
'19'{51.15 in a given sample, that a knowledge of the proportions

~\in the original population is essential for the solution. There
"we shall refer to it as the probability of an individual member
of that population; but in applying the conclusions to samples
drawn from it we must bear in mind that the probability in
question is merely a precise form of the @ priori probability
which we bave been considering here.
Probability as a Branch of Legic

The subject of probability is approached by many wyiters from
a different angle, viz. as an extension of a branch of logic. A set
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of facts, called the ‘data’, are stated, and a proposition referring
to them is set alongside them; among the numerous relations
that might be stated between the proposition and the data we
consider one typein particular. While we usually assert that the
proposition i either a true or a false statement about the data
(it is certainly true if the data émply the proposition), an inter-
mediate state may be considered. A class of 30 children may be
the data and the proposition, ‘All these children have browm\
eyes’, In this illustration the restricted form of the data tells us
nothing about the children’s eyes: the proposition is therefo‘re
not implied by the dasta, but is nevertheless not inconsistént with
them. If further information were available it is pessible that
the proposition might be truc; but as it stands, 1,1; ontstrips the
data. When such a situation arises it is said that $hie proposition
has a “probability relation’ with respect to thédata; the probabi-
lity relation is then regardedas a membef Of a class of relations,
the extremes of which are ‘true’ and f e’. We may say that

‘A proposition is true’, or

‘A proposition has a probablhty or

‘A proposition is false’.

It will be noticed that tﬁl&%ﬁﬁi{gggﬁl%"ﬁdﬂabﬂity suggests
that it is primarily psyc alogical; if it were purely logical there
would be no escape ftom the position that the proposition is
either implied or n&\imphcd by the data. It is when the pro-
position and the\data are not thus rigorously bound together
that the psychological attitude enters into the question. We
feel that dWhough the implication is not logically complete,
nevertheless if further data were available the proposition would
be fou‘nﬁ to be true. Thus the probability relation implies that
when the proposition is used for enlarging the data it may be
{Toind to be true; this views the probability relationship as
§tep towards the accumulation of further data and the final
establishment of a truth or falsehood: otherwise it remains
artificially separated from its function.

Consider the above illustration: to say that there is a proba-
bility that the 30 children all have brown eyes is futile unless
we go on to discover whether they have, or what proportion of
them have brown eyes. When this step Lias been taken, the final
data imply the truth or falsehood of the original proposition.
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This interpretation of a probability relation gives it a value
in seientific method. If, however, we attempt to give it a value
in itself by isclating it from the necessary part that it should
play in scientific method, the subject may be indeed developed
further but necessarily not on the present lines. To appreciate
this fact we must return to the concept of expectation: given a
get of data and a proposition which outstrips them, cach
individual, on the basis of his past experience, has a sense of
expectation that, if further data were acenmulated, the proposis
tion would be verified. A group of experimenters of wide experi-
ence in the particular field, i.e. on the basis of previdus*date
not here specified, would presumably agree that they, strongly
suspected or rather expected the proposition 7 be ‘true, or
thought if might be true. They may thus find themselves agree-
ing that a gradation in the sense of expectation is assoclated
in their minds with the possible truth.’o}’a proposition. To
proceed further along scientific lines ome objective measure of
expectation must be found, other@yisé the theory as so con-
stituted cannot come within thettenge of physical science. It
18 possible that the )x%%%rt‘.,pgxghologist might find such a

| 0
measure, by‘%k’aéﬁ{ﬁ{l‘g Ypeactions of the experimenters, but

not directly from the data. A statistician might find such a
measure, but he Wgu'la\derive it from the data alone, and not
from the experiménters’ sense of expectation.

Ar{ atternpt &0 overcome the diffieulty respecting the non-
metrical ngtage of probability when approached in this way
has beel}. {&ade by laying down the following axioms:¥

‘1:§(f..ive have two sets of data p and p’, and two propositions
g dnd g, and we consider the probabilities of ¢ given p, and of

: 4;(’ given p', then ... the probability of ¢ given p is either greater
\"than, equal to, or less than that of ¢’ given p.

2. All propositions impossible on the data have the same
probability, which is not greater than any other probability;
axlu‘} all propositions certaitt on the data have the same proba-
bility, which is not less than any other probability.’

F.TT'P J ;ﬁ:iiz;.?;tnﬂfcfnferme, ¢h. ii. A very similar artifice is adopted by

Lt  of Math Y s . .
criterion for the strength off a baliaf,g;?;; P- 158) but he ratains a subjective

personal reforence. See footnote, p. 27, hat bia symbols have an entirely
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Here by the phraseology used the sense of expectation has
been given a status that is invariant to the individual and
is atfached to the objective situation; at the same time it is
implied that this psychological probability is measurable., To
circumvent such difficultics, what amounts to a verbal artifice
has been adopted. The gradations in psychological expectation
are identified with the real numbers, using instead of the word
‘truth’ the word oNE, and writing it as 1; and using instead of
the word ‘falsehood’ the word zEmo, and writing it as 0. By
the use of this verhal method with the foregoing axiongSyall
probabilities of this nature apparently become measurable by
numbers Lying between 0 and 1t thereafter it is a simple matter
to derive the ordinary formulae for mathematical “probability
by sctting out a series of theorems, aucl ag: ‘

‘If several propositions are mutually congrddictory on the
data, the number attached to the probﬂk}iﬁty that some one
of them is true shall be the sum of thos¢:attached to the proba-
bilities that each separately is true.l’)"

In this treatment the idea ofpsychological probability has
been transformed merely by ,}15{3 ‘of an analogous terminology
into mathematical probapityauttratyetrabnt psychological
probabilities have been_gtated as numbers, which arc additive
and range betwecn ’Q"a.\ld 1, would, if these statements were
true, imply an elabgrately detailed knowledge of psychological
processes and thieir measurable qualities. In point of fact, of
course, no siell fata are availabie. It follows that, after these
assumptions have been made, the subsequent treatment of the
subjecs\eéiﬁnot differ in essentials from that of ordinary mathe-
matighIN probability; although the fact that it is artificially
b;:,géd' on psychological ideas may have the effect of confusing

othe later interpretations. If it is necessary at all to emphasize
the gravity of the assumption that psychological probability
is measured by numbers lying between 0 and 1, it is, for
example, sufficient to point out that one could equally well
arrange that ‘truth’ should correspond to the colour blue, and
‘falsehood’ to red, all intermediate colours in the spectrum
being assumed to correspond, somehow or other, to intermediate
states of feeling. Such an arrangement would imply the
same type of fallacy even though, as it stands, it does not
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immediately involve assumptions of measurability, but merely
those of correspondence.

At this point it is desirable to add that, in refuting a purely
psychological approach to probability, we are far from denying
thai that line of development is necessary. We have already
said that the concept of probability itself marks a useful stage in
scientific method—‘useful’ in the semse that it suggests the
direction in which to seck and interpret data; it is the stage
intermediate hetween partial ignorance and experiment&ﬂy\
sufficient certainty. )

£ 2\
28

"\
The Principle of Insufficient Reason AN

In this connexion it is worth considering a méthod which
various writers have evolved in order to arrive a.tf:g.’n estimate of
the a priori probability. It is commonly statet that if there is
insufficient evidence to justify a probabilitpassertion, the latter
can be established by referring it to theCprinciple of insuflicient
reason’. Let us quote Jeffreyst on/bhe’ subjoct:

‘How do we assess the probability of a proposition before we
have any means of knowing wljfgéthcr it is true or false? It has
often been, saidibthakibassgsgitigina probability implies some
knowledge, and that therefore we cannot assign a probability
when we arc in compléte ignorance. This opinion roust be
directly contradiétéd™” Complete ignorance is a state of know-
ledge . . . and dhe probabilities assigned upon it are perfectly
definite. TEm@have no means of choosing between alternatives,
the probabibitics attached to those alternatives are equal.’

Toadapt this standpoint is to deny the whole basis of science.
Sci‘g‘n}e"is based on knowledge, if only partial, and nothing
ﬁjﬁatsoever can be built on ignorance: without data no conclu-
(slon can be drawn. If the fundamental question of our subject
) can be stated in the form, ‘Given certain data in a given situa-

tion, what precise deduction can be drawn from them?’ then
the problem of drawing a deduction from ne data does not
fall within its scope. If we are in complete ignorance about an
event, then we are in complete ignorance of how to estimate its
probability. In this case the principle of insufficient Teason
asserts that the probability of its happening is 1, since the sum

t Scientific Inference, ch. ii.
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total of our relevant knowledge may be stated in two mutually
exclusive propositions which exhaust all the possibilities:

The cvent happens.

The event does not happen.

But we must nob, however, confuse the nature of the event
and the data concerning it with these two verbal propositions.
By hypothesis, we know nothing about the event; the above
two propositions provide data for another problem, which may
be stated simply as: \

‘Given that a certain statement belongs to a class of¢two
statements, what is the probability that it is the first “of
these ?° -

If the principle of insufficient reason is used in this’ way, it
tells us something about the arrangement of statements but
cannot provide us with any estimate of truth¥probability of
their content. N

It might be maintained that in pragctide ‘the principle is used
in this way to assess the probability A% and to base action on
the asscssment. As an unqualified\statement this is definitely
untrue; when we are unable toegtimate a probability, we may
as a matter of conveniente wudiadibroeytativie value of §, but
only as a roatter of convenience in practice. Every illustration
which can be producedsfiowever, in which the prineiple appears
to provide us with ‘edtimate of probability in the sense stated
above, turns out™o be so constructed that by definition all
relevant inforpi@taon that any one would know or immediately
seek to diseovér is automatically excluded. Action is never
taken on(bhe basis of no information, and judgement, when
it has(t0' be applied, must be applied to some content of
fact L8
mjA\s an illustration of an abstracted problem consider the
following:

AR is a line of unknown extent, XY is a segment of A B, of
unknown extent and position. If P is a point situated in 4B,
what is the probability, we ask, that P lies within the segment
XY ? On the basis of the above principle the answer would be .
There is in reality no such answer, for we have insufficient data
on which to make even an estimate of the probability, since the
points 4, B, X, ¥ are known only to exist on an infinite line,
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We can. however, state the three mutually exclusive proposi-
tions which together cxhaust ail the possibilities:

P lies to the left of X;

Pliesin XY;

P lies to the right of ¥, .
and the probability that a statement which is known to he one
of these three will be the second, is 1. In actual fact, no rational
being would use such an cstimate if, say, he were attompting
to recover an article lost in a street A B in which X ¥ was a very
small section—ecven if it were the most brightly ilwmninated,
section. O

If indeed probability is to be used as a guide to @eﬁioh, a8
it must be if it is to play its part in scientific methoQy then the
above iustration brings out the weakness of this.a}eﬁ)\ma-ch‘ On
this basis, the probability of finding the article in XY would
be 3, whether the lamp is present or nojs;j‘i}egrertheless, most
people would proceed straight to the lamip, since its presence
is more relevant to action than any akstFact estimate of proba-
bility based on mere verbal propusifions. [t seems clear that
when a situation arises in whighha priori probability can be
estimated on%yﬂbydlh%ﬂébéf%é’orﬁ{iieiple of insufficient reason,
this probability itself becofes insignificant as a guide to action,
and other factors become much more important.

&
Other Definitions cy’}mba-bility

‘ In the light oPthe above discussion, it is worth while examin-
ing the deﬁx:gi:jons that have been given by other writers, as a
presmble-dtheir mathematical treatment of the subject.

J au}@

Jar ernoulli begins by defining probability as the measure
of the strength of our expectation of a future event: this is

m(%@hﬂy a case of (3), and Bernoulli’s treatment must, if con-
N\ istent, lead to a mathematical theory of psychology. In spite
of his initial definition, his analysis is carried through as if
based on the definition {1} and his treatment becomes that of
purely mathematical probahility,
According to J. M. Keynes,T probability is not concerned with
events other than judgements or propositions; thus his treat-
ment, although symbolical in form, is one of a,non-measurable

1 Treatise on Probability £1621).
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logic and rules out mathematics altogether in the accepted
sense,

J. 8. Mill,} quoting from Laplace, says: ‘Probability has
reference partly to our ignorance, partly to our knowledge. . . .
The theory of chances consists in reducing all events of the same
kind to a certain number of cases equally possible, that is, such
that we are equally undecided as to their existence; and deter-
mining the number of these cases which are favourable to thel
event sought. The ratio of that number to the number of+all
the possible cases is the measure of the probability. . . .’\' NI

This is the definition to which Mill himself inclines,afd is a
confusion of at least two of our three concepts of probability;
the confusion is complete when later Mill adds that ‘we must
remember that the probability of an event is net a quality of
the event itself, but a mere name for the degree of ground
which we, or some one else, have for expéaetmg it. The proba-
bility of an event to one person is dadifferent thing from the
probability of the same event to a;}ofhér, or to the same person
after he has acquired additional €vidence. . . .’

From what we have already’ said it should be clear that
Mill’s definition does not dieHtafTauibrerions Mements which
entor into probability. For he is obviously thinking of (1) when
the events are presunied; and of (2) when they are being formed
in experimental pri%ice. We have seen how important it is
to distinguish between these two concepts; they are not inter-
changeable althdugh they may be mutually helpful. To take
the statistical definition, viz. the actual ratio of favourable, to
the togﬂ\‘nﬁmber, of cases from a block of similar past events,
as identical with the mathematical definition of probability
wourld be to identify a number, which in general varies with the
gtowing population, with a unique mathematical value which
emerges from the definition of certain classes.

The various types of probability estimates may be illustrated
by the experiment of tossing a coin, We may say, as has already
been suggested, that the ¢ priori probability of a head appearing
is }, & number drawn and posited from a wide but unspecified

T A Syastem of Logic, 8th edition, Book III.

1 Cf. Jeffreys, op. cit., p. 10: ‘A proposition . . , has ene and only one prob-
ability. If any person assigns a different probebility, be is simply wrong.’
See also footnote, p. 22,
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past experience. We may say that the mathematical proba-
bility is § on the grounds that there are only two possibilities,
head and tail, and that these are defined as having equal proba-
bility. Or we may actually perform an experiment; thus in the
following table we give the results of tossing such a coin 100
times, and the number of heads recorded after 10, 20, 30,..
tosses. Tt will be seen that the statistical probability ranges
from 0-46 to 0-65, and is therefore a function of the size of the

population, \
No. of " No. of T O
heads l tosses Ratio 2N N
B 10 060 A
13 20 | 065 N
16 30 | 0333

40 | 0525 N

'1
a1 |
23 B0 | 0-48
23 l 80 10-466\.
as b0 050N
43 I 80 | 037
4 1 90 J~,ox54
55 \ 100 (> 0-55

It is thlus seen, even at It\l;ug.r%tﬂge, 'that yet another problem
suggests itdelt as oafulmportance in interpreting such data as
those given above, Ifae associate the mathematical definition
of the probabilityio&bta.ining a head (namely 1) on any one
occasion, with ¢He statistical probability as here defined, we
may inquire what is the mathematical probability that in the
ﬁ:rst 100 ﬁ(@.’se“s of a coin {probahility of a head = 1} fluctua-
tlo.ns from?; of this magnitude will occur. We shall deal with

- thiz g}s.;éstion in Chapter V; but for the moment it is important
tq cognize how mathematical probability may be used to
\;{nterl?ret a fluctuating stafistical probability.
L  This fluctuation is, of course, necessarily associated, as in the
\/ case of & coin, with the method of tossing. It is clear that with
a given coin which is tossed by some mechanical process
{beginning always with, say, the head upwards), it could be
ar%-anged that the result of each toss is always he,a;d or always
tail; or, alternatively, that the ratio of the n;lmber of heads to
the meber of fails takes & certain series of values within a
specified range.

The above example illustrates the fact, which we shall
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encounter frequently, that in any physical process to which
probability is to apply, there are three interlocked clements:
(1) a ‘population’ P, in the above case, of heads and tails;
(2) a process of selection S (here a mode of tossing};
(3) a sample s drawn from P by the application of §. This
process miay be stated symbolically in the form ¢ == S(P).
In the previous examples where the ¢oin has been tossed

100 times, it has been shown that, with the particular form ofs

S used in the experiment, the sample ¢ drawn contains numlzers
of heads in ratios lying between 0-46 and 0-635. (NN

Some discussions of statistical probability, when they Atbempt
to link it up with mathematical probability, try te“do soc by
asserting that the ratio obtained by sampling & Hopu]atlon can
he made to lie within increasingly narrower lifimts merely by
lengthening the process §, It seems clear, feom what we have
said, that it is not simply the length buf’ alto the form of the
process that is of importance. The gap\m the discussion will
not be bridged until it can be sho@nh ‘that there exists some
kind of process § which is ca’pable of mathematical and
empirical definition, and of leading to such a result; any particu-
lar process of this type "Coifl P RERRR]Y be called a
‘random’ one, and the elass of such processes would in such
circumstances identify”%he mathematical with the statistical
definition. That allprocesses § do not fall within this category
i obvious from the fact thaot S can be deliberately designed so
as to violate thelFequired condition.

The read@rs advised to try this experiment himself, and to
note that the ratios he obtains are different from those given
aboved N

Ig his discussion of the subject, Coolidget attempts to sur-
'thount the breach between the mathematical and the empirical
approach (i.e. between (1) and (2)) by the following ‘empirical
* assumptions’ of the type to which we have referred.

‘1. If an event which can happen in two different ways be
repeated a great number of times under the same essential
conditions, the ratio of the number of times that it happens in
one way, to the total number of trials, will appreach a definite
limit as the latter number increases indefinitely.

Y An Introduction lo Mathematical Probability (1925},
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2. If an event can happen in a certain number of ways, all
of which are equally likely, and if a ccrtain number of these be
called favourable, then the ratio of favourable ways to the
total number ig equal to the probability that the event will
turn out favourably.’

The first of these assumptions is devoid of mathematical
precision; first, because the question is begged by the phrase
‘the same essential conditions’. This is 2 phrase which com:
monly occurs in all branches of mathematical physics. It\is
often posed as a fundamental proposition in scientific méthod
in the form, “The same experiment always produces the'same
results when carried out under the same conditior;s.",; For our
purpose it is important to note that no two experimerts can be
the same; invariably they differ in time or piﬁcé, and almost
tnvariably in experimenter and apparatis This critieism
applies also to the phrase ‘the same (;onhitions’: the test for
‘sameness’ in two cases is provided hythe results, for these are
numbers which can be checked against cach other. In the last
analysis the test whether thesevaonditions have in fact been
fulfilled lies in the e%%%raﬁan%fgfi gertain intermediate and all
the final resti2” “Fhie t e %ropos:tion quoted is meaningless;
it represents an effort t4*abolish a vital distinction between two
concepts which d.iff’e‘r'fundamenta-l]y and is simply a concession
to mathematical €onvenience,

So much for(the criterion of sameness in the first empirical
assumptions W the sceond place, the assertion that the ratio
approaqheéﬁ- *definite limit’ cannot be justified by any mathe-
matiea] Wefinition of a limit. [t has to be dealt with in the
magner already indicated.

The sccond assumption is not an assumption at all, but a
\ '.eﬁnition, as is indicated by the phrase ‘equally likely’. This is
elt.hel‘. an appeal to subjective psychology (under (3)) or a petitio
principet, in that the measure of the probability, as defined, will
by its .consistency indicate a criterion for ‘equal likelihood’.
An interesting attempt has been made by Mises to erect a
tilzam:y of probabi]ity that would bridge the gap between the
EO r%::li;:rala ;nathemamca,l a,_nd the statistical approach. The
. B8 we have Seen, 18 concerned with a given population
and confines its questions to those relating to the relative fre-
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quency of various arrangements of the elements of that popula-
tion. Mises’s theory is in the first place a statistical one. He
confines his attention to the infinite succession of unit samples
as they are drawn from an unknown population or as they
are created by the repetition of a particular action {e.g. the
tossing of a coin), and the guestions that arc raised concern
the nature of the predictions that can be made regarding the
aceurrence or non-occurrence of a particular kind of sample ins
the sequence.

Let the symhbols 1 and 0 be used to represent ‘successd e
‘failure’, or ‘black’ and ‘white’, the two possible outedmies of
an action. Then Mises is conccmed with a collection gfhe type

1,0,0,1,1,1,1,0,1,0,0,0,1,0,40
and proposes ta define its structure in such a way'as to provide
a reasonable meaning to the phase ‘“The \probablhty of the
occurrence of 17, \‘

'The nature of the definition of strueture, however, must not
be such as to destroy the ‘random? gcourrence of the 1's with
respect to the ¢'s; in other words," there must be present a per-
sistent disorder. Thlﬂ 1mphg§w %{W_du sleérghat by no detailéd
study of the system should it be posmbm for example, for a
gambler to discover a pdtbern or law in the occurrence of the
symbols of such a fo n(trﬁat- he could arrange his gambling with
anhy certainty on th&ccuﬂence, say, of a 0 or 2 1 at a scries
of allotted posit{oﬁs’.

To fulfil théss requirements the sequence is restricted by the
following $w6 conditions:

(1) If\h the first » symbols, there cccur m of the type 1,
then the sequence is such that

AN

O fim ™ = p.
nx 1

The probability of the occurrence of 1 in the sequence is defined
as .

This statement may be put in a form more usual with the
treatment of sequences ; thus corresponding to any small num-
ber e it is possible to find a number of terms N, beginning from
the left, and a number p, such that for all values of = N the

ratio m/n will continue to differ from p by less than e.
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(2) The second condition is the Principle of Ddisorder. K
demands further that the sequence shall be of such a nature
that by whatever system or law, related to the order of the
terms, a new sequence be formed from all or some of the terms
of the original, all such derived sequences shall separately
satisfy the previous condition with the same value of the prob-
ability p. N\

At this stage two points should be noted. Condition {l1)at
first sight bears a very close similarity to assumptiorn 1) of
Coolidge {p. 29). .\

Here we may remark, however, that whereas the Tatter took
the statement of convergence as an empirica,'l’@ss'umption ap-
plicable to real statistical data, in the presextlease the condition
of sonvergence is merely a restrictive prqgg,'rty of the collection
to be considered. The question wheth&ar"sequences satisfying

such a condition do embrace a,ctua}‘st'a istical data empirically
derived remains open. \J

The second criticism may in \a'sense be much more serjous.
The Principle of Disorder, @pplicable as it must be to every
systematically derivied, sefusmos, must impose very drastic Te-
strictions on the OﬂgiQal. It has been claimed, in fact, that if
conditions (1) a; do\(Z} are not actually inconsistent (in which
cage the class oflgsquence defined would be empty), there can-
not be any wide'range of types that satisfy both requirements
and that theréfore the application to actual statistical data is
seriously festricted.

ABeguence satisfying the foregoing two conditions is termed
by Mises a Collective, and the purpose of his investigation is

(o show, if possible, that the fundamental theorems of mathe-

) “‘matical probability, viz. the Addition, Multiplication, and Ber-

noulli Theorems,T all hold for a Collective. It would then be
possible to state under what conditions these theorcms might
be validly applied to the analysis of a statistical system.

In the pursuit of this objective great mathematical difficulties
have been experienced. To establish the multiplication theorem
a special definition has to be made to cover the case of two
Collectives that are mutuglly disorderly. In effect this is met
by the requirement that by no systematic transformation can

t See pp. 49, 51, 58,
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the one Collective be transformed into the other. On the other
hand, to establish Bernoulli’s Theorem Mises requires to apply
the Principle of Disorder already referred to, not only to
sequences transformed according to some law of position, ie.
secording to some specific function of », but also to all those
that can be derived by applying any regular rule $o localized
gualities in the Collective, e.g. deriving a sequence by choosing
the numbers that are two places to the left of each 1. Q
We need not pursue this topic in greater detail. Sexiots
_criticisms have been raised against the validity of thé, Mises
approach by Waismann, Kamke, Reichenbach, Popper, and
others. Tt is contended, for example, that condition (1) is in
itself meaningless ; that there can be no signifiggpée to the con-
vergence property without defining the law efithe sequence, and
since the essence of the sequence is thatsitshould be lawless
except for condition (1), there is an iJ;Q’erent contradietion in-
volved. Actually, of course, Mises’sfirst condifion is really a
demand on the derived converggﬂcy; sequence. Similar criti-
cisms have been levelled against-the suggestions of Kamke and
Reichenbach, in their efforta'te escape from the various logical
dilemmas aroused. The fustitdbrabbRyserpiof the Collective
becomes so restricted &hat the class of illustration included
reduces almosf tocernptiness, it becomes increasingly difficult
to find actual ﬂlus\ﬁrations that satisfy the requirements, and
the statistical matlue of the approach is thus seriously impaired.
The importa’zﬁae of the subject rests therefore rather on the
nature Qf.:t\he logical problems raised than on any adequate
bridge.that may be built between statistical and mathematical
prob’a}b}]ity.
N
3."Mathematical determinism
Scientific investigation, when used as a guide to action, is
turned in the first instance towards making a prediction; it
seeks to state that if certain cireumstances remain unchanged,
then an event will develop in a particular way. In mathematics
this process takes the form of striet logical deduction; in statisti-
cal work, on the other hand, the process is essentially one of
induction, and for that reason the final statement itz accom-

panied with less assurance than the mathematician’s. The
£260
. D
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difference in outlook between the mathematician and the
empiricist is, however, more apparent than real; the former hag
cast agide his doubts hy postulating a given set of circumstanees
and rclying on mathematical logic: the latter, in making his
induction, is doubtful whether the ‘givenness’ ean be carried
forward. Nevertheless, both seientists arrive at a unique and
precise conclusion. It is worth while examining how this can
occur, since our examination will bring out the part which!
probability estimates play in the process.

N
7 "' A

"N\

The Typical Problem of Mathematics >

Consider the problem of constructing a plane tufi ngle from
the knowledge of two sides and the angle incfufied botween
them. If this knowledge is exact, the t-riangle'c:in he wniquely
construetied, and all its characteristics, e.g{&.the length of the
remaining side and the angles adjaccf\f’ to it, arc uniquely
calculable. AV

This example can be taken ag\typical of a mathematiecal
problem: eertain data are givqn:ﬁfnd certain unique conelusions
follow logici:]&y. ,Jlglr%]h 't;‘_ig)rr%z ‘%ﬂ %l}g ‘given’ facts, however, thfare
are always Gertain tacit agsumptions implicit in the discussion
—in the above case, ‘t-h)s assumptions of Euclidean geometry.

Suppose now thaf the initial data, for the construction of &
plam: triangle, ane two sides and an angle, which is not the
included anglé?; Then it is well known that in gencral there is
no longer aunicue solution to the problem ; there are in fact two
t.rlanglig:which satisfy the requirements stated. If we asked
“’h";fthc our conditions ‘determined’ the triangle, the answer
wanld certainly be No. Suppose, however, that having dis-
\ govered the existence of the two solutions, we restate the

’ problem in‘ the form: To construct the two triangles which
h‘ave two given sides and a given angle oppesite to one of them.
The solution to our problem is now unique and has been con-
verted fro‘m an indeterminate problem into a determinate one
?{i Ii?uchmg the statement of the problem in appropriate
T
anglo € n & tlot g whose“, base 4 B is given and W}‘EOW

€ rigat angle. There is, of course, no such unique
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triangle; any one of the triangles whose vertex C lies on the
circle whose diameter is 4 B satisfies the given conditions. Thus,
at first sight, the problem is necessarily indeterminate, with an
infinity of solutions. If, however, we restate the problem by
requiring the locus of the vertices of all triangles satisfying the
specified conditions, then the locus is unigue, and the problem
has a unique, determinate solution.t In this, as in the Pre;
ceding case, there are assumptions inherent in the analysis;
we have, for instance, implied that all the required triangléeslie
in a plane; if we become aware of this restriction and refove it,
we obtain for the locus of vertices not a circle but asphere.

These examples illusérate the general proposition.that every
problem in geometry which starts from a set"of data linked
together and worked on by a logical process,\Neads to a unique
result which can be regarded as the cofisequence of a logical
determinism. O

Problems in classical mechanies{apé identical in form with
guch geometrical problems, Onee more we are given certain
entities—particles of mattcrj.'mésses, electric charges, etc.—
which correspond to the points and lines of the geometrical
problem. In addition ShErs IS HBKEEM AR Helds of force or
interactions between the particles of matter. -A typical problem
in mechanices may\t\)e posed thus: ‘A mass M (which we call
the sun) is situated in the neighbourhood of another mass m
(called the p‘a}th); given that the masses are moving with a
known spéedl and attract each other with a force equal to the
inversd\square of the distance, what follows as regards their
pa-th‘a‘?§’ Here again the problem is in reality one of finding a
fosm of statement which, with the given data assembled in

{“mithematical symbols, leads to an inescapable conclusion.

Consider another example: A particle is projected in any given,
direction with a given velocity. Given also that the earth’s
attraction imposes on it an acceleration g downwards, ‘where
will the particle meet the horizontal planc through the point
of projection? In these circumstances the solution is logically
unique and determinate and is applied for the prediction of
physical events, This fact is sometimes referred to as mechanical

} Cf. Abel’s dietum: *On doit donner au probléme une forme telle gu'tl soit
toujours possible de le résoudre.’
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instead of logical determinism; but to justify such terminology
we should require evidence that what is given and what is
accepted as logical necessitics are both necessities of natural
mechanical processes. For the moment the important fact for
us is that the conclusion is unique, and in the circumstances
Inescapable. If instead the particle is projected in any direction
with a given velocity, it is not difficult to prove that there isng™
unigque solution to our problem. On the other hand, W we
require the maximum range described by the particle, theh Suce
again the solution is unique and determinate. A

In classieal mechanics, as we have described it, exeryproblem
can be posed in such a way that, with the given data and
the principles for their combination, its solttion iz unique
and precise, and no indeterminism need 18e: the essence of
the procedure ix deterministic. Now theve are two classes of
investigation in which this procedird.appears to be unsatis-
factory, and both arise from thgzzipi)]ication of the classical
method to problems of prediction™s As we have seen, the process
of prediction is itself neces&}}jrﬂy a logical one: if we have
appropriately phr%s_ed qur problem in the light of the data and
adopted thé‘ré"f)‘f{fgcﬁapfygi%ﬁ gutding principles, to obtain any-
thing but a unique solution is, in physical science, tantamount
to a failure of scignée. We therefore ask in what respects may

our aaﬂumptioxls and principles be invalid; in so far as they relate
to the quest\ic}n of prediction.

The Tt{iéﬁlasses of Investigation

Le€ us examine the two classes of investigation referred to
q.bcjv.e: both result from the problem of deciding what may be
Gdnsu?ered as ‘given’ in the process of prediction in Nature.
For his own purposes, the mathematician may assume any set
of mutually consistent hypotheses; but in order to satisfy the
pThysicist, these must represent what is actually found in
Nature. Thus, in our example of the projected particle, we
ass?med that the particle is projected with a given velocity in
& given direction. The particle may be given, but in practice
it is not 8 mathematical ‘point’ but a Physical ‘piece of matter’
ha,v.mg.mze, shape, and weight. Again, the given velocity of
projection is, for physical purposes, the velocity as actually
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measured; and an elementary knowledge of experimental pro-
cesses tells us that it is impossible to say precisely what that is.
As far as the experimenter’s knowledge goes, it may he any-
thing between certain narrow limits, and a variation of even
a small amount in the velocity may make & considerable
difference in the range of the particle. The mathematician,
too, may make & tacit assumption that the particle is pro-
jected in vacuo: the physicist, who knows better, expects the
neglected resistance of the air to make a considerable differgnte
to the range. \
There are inmumerable other factors, which we'n’géd not
describe, that cause the actual problem to diffep,from the
mathematical one. Even the final verification, 40 test the
mathematical prediction of the range is subject s the same sord
of imprecision as the measured ‘length’ of ’phctdésk (p. 16). What
does this imply? It means that in asguing a scries of initial
factors as ‘given’, the mathematicigh has followed a mathe-
matically determinate scheme, anid has thus tacitly supposed
that all the interconnexions ef his abstract isolated problem
with the rest of the universe.gan be legitimately ignored. If he
wipne wr, dbrrguli 3 AT _
proposes to apply such ajpiecess tb e Aredald, every one of
the so-called ‘given’ élaments in his problem must be intro-
duced not in the fofmof a discrete quantity, but as one which
may vary within' adcertain band of values, determined for him
by the experhitenter. The process of prediction can still be
carried throtgh and the answer obtained is unique; but it has
to be cp\{oﬁed, not in the form, ‘the resulting range 18 precisely
80 muél?’, but in the form, ‘the range must lie within a certain
band 'of variation’. We must realize that, in making a predic-
“tion, the mathematician endeavours to anticipate the measure-

Thent that will notually be found, and that he is coneerned only
r discusses the question, que

with such measurements: he neve
ch these measures

mathematician, whether the process from whi
emerge is itself determinate apart from this. A prediction, let
us repeat, is an attempt to anticipate messurement; and to that
extent only is it an attempt to anticipate process.

It will be recognized that the above description of the mathe-
matieally determinist process in physics always involves an
indeterminacy in a certain special sense: it arises from the gap
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between the actual process interrelated in Nature and the
partial measures of isolated phenomena obtained by the experi-
menters. It is bound up with the fuct that science never studies
Nature as a whole but in fragments, tacitly assuming that ideal
apparatus can be designed that will be unaffected b v the process
studied, and that processes cun be discovered that are unaffected
by the apparatus used, To ignore these inescapable intercons,
nexions, implying that with greater refinement in ap paratng
and experimental technique the mathematical hypotheseg sotild
be made to approximate to any degree of closcnqs;-;,:\to the
Physical process, is to be guilty of a methodological*faflacy.
Thus the first type of indeterminacy has usually Becn ascribed

to experimental error, the cause of the erro
the so-called ‘laws of chance’.
the real implication was that
mechanical laws plus laws of cf
could be fully elucidated,

r Melng assigned to
Whatever thoss laws might be,
the univer§a was ‘governed’ by
1ance; and that if only the latter
he mibhematician’s predictions
could be made to coincide absoluely with the experimenter’s
measurements. It is worth exa mining in detail why such a co-

incidence could never oeeur. “Consider this typica) illustration.
A measurmg‘ﬂﬁp%ti}éatuulégﬂgfgyd%rﬁlﬁ: mea-surin}gpsca,le subdivided
by fine lines: the measlring process consists in fitting a mark
between two such¢ ubdivisions, Thug in every measurement
Tnhere is implicit #n actyal experimental uncertainty, and in an
mvolved experiment, into which many such measurements may
enter, the t-(ktal extent of such uncertainty may be large.

The seeohd class of indeterminacy does not differ funda-

; the range of experimental uncertainty

that . 2 tebound on the Part of the electron, so
' nd measuring its position and gpeed
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can only occur physically when ite speed and position are in
process of change and not otherwise. Here the process of
measurcment, itself part of Nature, is intimately bound up with
and involved in the actual process studied. At the moment it
docs not appear to be possible to isolate one from the other by
any extension of normal scientific method. From a study of
the theory and practice of such processes it is found that the
product of the uncertainties in the experimenter’s measurey
ment of position, and of velocity, is of the magnitude of Planck’s
consiant, a certain well-known number. Thus, the. phyéic“al
limitation involved in the attempt to specify the ‘giveni\condi-
tions for sub-atomic particles leads us to the conclitsion that
both the initial position and the initial speed earigdt be inde-
pendently determined to any prescribed degtes ‘of accuracy,
even if the numerous factors already involvéd in the firat class
of problem were not present. ¢ O
Lot us emphasize once more the distinction between the two
¢lasses of problem. In the first c]q-s:s, ‘despite the uncertainties
which arise from the entanglet:ﬂe}it of the abstracted problem
with the rest of the universe;\the mathematical logie of the
abstract process can still/bemdbrindi bhaopghy im the second class
the mathematician whodias exposed one of the forms of entangle-
ment iz faced with, the fact that if e atbtempts to allow for it
initially, the mathematical logic he intended to use no longer
avails him. Pwe’ quantities which, for the purposes of his
logie, should bé initially independent, are shown to be inter-
locked. .A;(.‘E(;rd_ingly, he iz now faced with a new class of
prohlqrﬁi“g'iven that the initial speed and position are inter-
relatédin the manner described, what are the guiding processes
_16'be assumed for such a group of entities, in order €hat a unique
ahswer may be obtained, and what will be the general nature of
that answer? It must be realized that we are still dealing with
a question of mathematical determinism; and although we may
find as a result of such an investigation that our prediction
asserts that after a certain interval of time the electrified
‘particle’ may be anywhere within a certain region, this does
not vitiate the fact that the process js still deterministic; the
problem has only to be correctly stated. The mathematical
process determines uniquely for us what can be derived from
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the given assumed circumstances. The so-called ‘“uncertainty’
resides simply in the physical specification of the assumptions.

A stream of electrons presumably in parallel motion, when
striking a film, distribute themselves in the form of concentric
rings. The fact that this phenomenon may be deseribed mathe-
matically as ‘the probability of an electron falling at any
distance from the centre of the film is some kind of function of\
position’, implies not that there is & physical indeterminateness
in the fate of any individual electron, but that, in the cizduba-
stances, the probability distribution describes the belidwiour
for the stream of electrons. If, therefore, we desirgtq Testate
the deterministic conclusions concerning the groupistribution
in terms of the behaviour of an individual elect-r’(j;}, we can only
do this by describing its behavicur in terms ofprobability. This
does not imply an uncertainty in its intrifisi¢ behaviour, but a
lack of detailed knowledge for solving thg\ﬁéw problem.



CHAPTER III
THE THEORY OF ARRANGEMENTS

SixcE the mathematical theory of probability treats of the
relative frequency with which certain groups of objects may be
conceived as arranged within a population, one type of problem
which we have to consider, preparatory to the main investiga™
tion, is concerned with the number of ways in which vapious
A

sub-groups may be formed or partitioned {from the meml:)(,rs of
a larger group. Many of the theorems arising from thig problem
are of an elementary nature and to these the present Chapter is
devoted. '\\

In dealing with objects in groups we are led o consider two
kinds of arrangement, according as the 9@0’1‘ of the objects in
the groups is or is not taken into accou@i

DerinitioN. The number of different ways in which n objecls
can be arranged in groups of r, regard being had 1o the order of
arrangement, is called the numﬁer of r-permutations of the n
objects.

www dbl aulibrary.o
Evidently, two permutations are 1dentlcaigu hen they contain

the same objects arranged in the same order.
If the n given objects are all different, the number of r-per-
mutations is dexOted by the symbol *£.

To find the umber of r-permutations of n different objects

To formany one arrangement we may select any one of the
ob]ectQtO be the first in the arrangement; such a selection can
be mﬁdc in % ways. The second object in our arrangement may
Je)any one of the remaining n—1; thus there are n(n— 1) ways

\ of arranging the first two objects. S1m1]ar1y, the selection of the
first three objects can be made in n{n—1)(n—2) ways. Thus, in
general, we can sclect 7 objects in n(n—1)(n— 2)...(n—r+1)
ways; and therefore
nP = p(n—1)n—2)..(a—7r41)

COROLLARY. The number of n-permulations of n different

objects is np = n(n—1)n—2)..3.2.1.

The product #{n—1)(n—~2)...3.2.1 is denoted by the symbol



o
\
\ 3

42 THE THEORY OF ARRANGEMENTS Chap. III
!, called ‘factorial #°. To obtain consistency in our notation,
we make the convention that the symbols 1! and 0! are to be
interpreted as being equal to unity.

Ex. 1. How many different numbers ean be formed by using four ont
of the nine digits 1, 2, 3,..., 9¢

The required number is °P, = 9.8.7.6 = 3,024,

Ex. 2. How many different numbers, each of four digits, can ba
formed from the ten digits 0, 1, 2,..., 8%

The total number of 4-permutations of the digits s *F,. and from
ihis we must deduet the number of permutations in which U occupies
the first place, that is, *P;. Hence the required number is 2 AN

wp _sp — 4,536. O
Ex. 3. Show that the number of ways in which » podks can be

arranged on s shelf so that two particular books urcdigh together is
(r—2)in— 1. o

T'o find the number of permutations of n objfflfs which are not all
different >

%4

Let the n objects be represented by'laters, and suppose that
p of them are a’s, g of them b’s, » pfithem ¢'s, and so on.

If for a moment we suppose $hat the p letters o are changed
into letters which are diﬁfe;'eﬁf/’from each other and from the
rest, then by changing only the arrangement of these new
letters, we should llav&'\instead of one permutation, p! difierent
permutations. O

Hence, if P is\t\he required number of permutations, the
humber of permutations now obtainéd is Pp!.

Similarlyfve suppose that the b’s are changed into g letters
different/fiom each other and from the rest, the number of

permufations is now Pplgh.
the letters ure changed so that no two are alike,

see fhat if all
the total number of permutations is P plalrtio..

- _' Buif in this cass it kvelestdhat the total number of permuta-
tions is n!. Hence Pplgly!

Proceeding in this manner, we

L. = n!, so that
_ nl
oplglell”

This result is, apparently, due to Montmort (1708).
Ex. 1, The nl\.;r:nber of permutations of all the letters of the word
misdissippiis —__ - 5
PPL is faim = 34,650,
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Ex. 2. Find the number of r-permutations of » objects, when each
ean be repeated any number of times.
Any one of the n objects can be selected first, and any one of the

objects is still available for selection; and so on. Hence the reqguired

i
number is .. = W

¥ix. 3. Show that the nurber of permutations of n objects all together,
in which » specified objects are to be in an assigned order, is nljrl
Ex, 4. Prove that *tF, = "F{-r2f_,

Derrxirion. The number of different ways i whick n@b}scts
can be separated into groups of r, irrespective of the order of driange-
ment, 18 called the number of r-combinations of the n‘@bjects

When the objects are all different, the numbp\r Of r-combina-
tions is denoted by (.

To find the number of r-combinations of qusi@jj’erent objects.

It is clear that every such combination would give rise to 7!
permutations, if the order of the’ebjects were altered in all
possible ways. Hence we have,

7 ’?G’ — ’“P,.
The sarne result may be obtamed otherwise, as follows: Congider those

r-combinations which contflimapaxtieulerisbifeh o ‘%}(}ﬁnﬂy the number
of such combmatmns s, Thus, in the total number of 7-com-
binations every o chwocours #-1(] _, times, and therefore the total
number of objects ineluded is n#-1C,_,. But since # objects ocour in
each combinatiost, the total nmnber must also be r *C,. We thus derive
the relatlon S\ 70, = n10,_,.

Thls holdq for all the values of # and #. Changing  into #~ 1 and r into
—1, ,QQ ‘Bave in succession

R (r—=1)" 10 = (n=1)"2C ,,
NS (r—2)"20,_4 = {(n—2)"2C,_s,
\ / n—r+101 =n—7-F+L

Multiplying together corresponding mernbers of these equations and
cancelling the common factors, we obtain

w0, == n(n—In—2) (n—r+ 1)/rt.
Note that »(, may be written as n!/ri(n—r)L.

CoROLLARY 1. The number of r-combinations of n different
objects is equal to the number of (n—r)-combinations of the n
objects.

For »C,_, = nlf{n—r)ln—n+n)! = nlfrin—r)t = C.
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COROLLARY 2. 0,470,y == "+,

We have
WG = “_(’*E_'_ﬂ-.-%"‘?fiﬂ? +?"('_”:1()?-;_-_(f13)_?1’.+_2)
—_ ?i(?f_“_n;&ﬁ‘ﬁm (n—r+147)
_ Dnln—)).(n=rd2) g X
- 7! r ¢

A0
We leave a# an exercise $0 the reader the proof of bht?'%e*results
from first principles. A\ 3

Ex. 1. Find the number of diagonals of a polygon ‘ai?n\sides.
The number is ’

2C—n = fuln—1)—n = In{asd).

Ex. 2. In how many ways can 4 conunitﬁéglof 6 be formed i‘rol.n 8

party of 5 ladies and 8 gentlemen, if the cqrrfmfttee ia to contain 2 ladies?

The number of ways of choosing the Jadies is *C,; the number of ways

of choosing the gentlemen is #C,. Thus the number of possible ways i3

5,48.7.8.5

8Oy w30 =

“:ww,dbrau]il?mlj;_gl'éi'z'?"4

Ex. 3. If the committde\is to contain at most 2 ladies, then the
number of possible seleetions is

= 700.

50, % 80,3 50y X 80+ 90, — 700280428 — 1,008.

Ex. 4, Show £hat, in the n-combinations of 2n different objects, the

number of cpm’bmtions in which o particular object occurs is equal to
the aumbef 3}} “which it does not ceeur,

EX- B \Given n points in & plane such that no two of the lines joining
P&mﬁf\POiMS are parallel and no three are concwrrent save those which

pas3 through one of the given points, in how meny points do the lines
s Jnberseet 7

For the further discussion of problems of arrangement a number
of preliminary theorems are required.

Use of Stitling’s Theorem

From the above examples it will be noted that the calculation
of »P, and *C,, when % and r are large, may be a tedious if not
iy @iﬁﬁmﬂt process. For the purpose of approximate evaluation,
1t-is often convenient fo replace the factorial expressions which
oceur by other expressions to which they tend asymptotically.



Chap. TT1 THE THEORY OF ARRANGEMENTS 45
A formula due to Stirling (1718), which we shall establish later
(p. 65), tells us that

nl = J(%n)n"e—”(l + i%...),

1 1
where e = 1+T|+§_'r"' = 2:71828....

Thus the relative error involved in taking only the first term’\

in the above formula is about %, i.e. 8/n per cent., approxi®

1o

mately. N\

Ex. We have 5! = 120, while the Stirling formula gives 5}‘; 118-1.

Again, 10! = 3,628,800; Stirling’s formula gives 3,598,6?9. }
The Binomial Theorem ,'“.‘\\

Suppose that we are given #n letters gy, g, Gy @ndl that we wish to
evaluate the product x,\\,‘

(1+al}{l—}-a=)...(1—{—aﬁ§;.

The first term in the expanded form of $his product, in which none of
the letters occurs, is 1; the next term, in‘which each letter occurs once,

is the sum of all the letters, denoted\By 3 a;; the next term consists
of the sum of the products of all théletters taken two at a time, denoted

by ¥ aya,; and so on. The fnghibemm| issimpl-gha product of the »
letters altogether. Thus we have
(14ay)(1+ay)...(E+gah
= Q\E ayt 3 a2t S 210,85 ety Qg
Now supposo that/we write @y = @3 = .. = &, = %; the product bn
comes (1+x)", {Phe term 3 a, is evidently x*C}, the term 3 aya, is
2™y, and sg ény Hence, substituting these results, we obtain
PGS SRILIEN WELTS N R R oY b S e
This ex&nﬁi{m is known as the binomital theorem for o positive exponrent #.
The Bistomial Coefficionts
... (We'write the binomial expansion in the form
V) ) (L2} = g0, 8+ Cu @2+t 6@+ 0, 3% (1)
The coefficiens c, is equal to #(, = *C,_,, by Corollary I (p. 43). Thus
¢, = ¢,_,; that is, the coefficient of 2 is equal to the eoofficient of z7.
Putting z = I in the identity (1) we obtain
Cot 0y Cg o0y = 2%
Putting x = —1, we have
GG“CI+C=-”03+-"+(_I)"GR = 0.
From these results it follows that
CotCat-Cotre = O Fostos T = 2%
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Now put # == 4, where 32 = —1,i%® = —4, i* = 1, and so on. Thus
cotiey—Cy—icytogt... = (14+4)",

Putting z = —1, we have
ey—ity— ey Fiey e, —.. = {1—1)m.

By addition we obtain

Ey— Lyt 0y— €t = H(I+HIP (1 —1)n),
By subtraction, . ~
€ —epFeg—.. = éfé{(l—!—é)“—(l—i)"}.

N

oA\
Ex. 1. By constdering the product of {14-x}" and {1+ 1/z)"sebow'that
teltototd = Iy
Ex. 2. Find the value of D
-t +ei—.... "
Ex. 3. Prove that \J
&1+ 205+ 365+ +ne,, = n@?‘

Greatest Term in the Expansion ¢* ;‘\

In the expansion of (142)* where njé,} positive integer, and x is
positive, the ratio of the (r+1)th ternd t'the rth is evidently

n{n—1)..(n—r41) (e 1) _n—r4l
rl R TP "
This ratio ca-%mglﬁ{%g Hx and since ! decreases as

T
r increases, the ratio iggsif decreases as r increases. If the ratio is less
than 1 for any va w{;}f’r, the {r4+ 1)th term will be less than the rth.
Hence, in order thatthe rth term should be the greatest we must have
o7 1 n—r42
o< 1 and -—-T—x = 1.

Thus # t&.’!itisﬁes the inequalitics
4 "\ W/

\. (nt1)z (nt+ 1)z
.)Q TP e TSy tL

“»we have - —' Zu — 1; in this case there is no one
x+1 r

greatest term in the expansion, but the rth and {r+ 1)th terms are equal,
and are greater than any of the other torms,
Ifxis negative, the terms of the expansion alternate in sigm, but the

method used above still avails to determine the numerically greatest
term in the expansjon.

Ex. Find the greatest term in the expansion of (14-z), when » = .

The Multinomial Theorem

Ifnisa positive integer, the expression (¥, +a,4-...4-a,, )" may
be expanded in a form analogous to that obtained for (14-=x)”.
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Thus, to distribute the product of » factors
(xl—l—x2+...+xm)(x1+x2+...—|—xm).‘.(:rl—i—x2+...—|*xm)
we have to find the coefficient of any given term, for example
Ty A

where o, o+ Ay, == .
Evidently, the number of times that this particular term
arises in the product is the number of n-permutations of the{

m letters, in which o, are alike, a, are alike . . ., and so om.
Hence by the theorem given above {p. 42) the coefficient of tHe
n! O

given term is

— N
oy tagt ey \

Thus, finally, we obtain 'm'\“
n! 4
2y by, = Z__._._x%x%...xﬂm,
21+ ) oqlog! oo cx;nT\\lj 2 "
where o, tig,..., o, take all positive integral values for which
a:l—!—r_tz—i—m—i—cxm:? 7.
This result is the multinomial gheéorem for a positive integral
index. O8N
rrr.d b libr —_—
The Binomial Series ,}' w-dbraulibrary.org.in
If # is not a positive inbeget, the series

ol _ s -
1 _'_nq;mﬂé‘_l_) 3 izjﬂ__l?)fllms+ e

doss not terznina}te';“we may show that it converges for all values of x
which are numjerically less than upity. When n is & negative integer
the sum of the serics, for such values of @, is equal to (1+5)%; and when
nis 8 rg Nal number the swm is equal to the principal value of (1 +-z)",
i.e. the Peal positive value of this expression.

/Fhus, if n == —m, where m is & positive integer, then.

O o (- L}m+2 :
Q7 oy = 1oy Tt

provided & < 1. In particular, we have
(14fay? = I—mta—.
(1—a) ! = L+ztziton
(14a)? = L2 8a% — e
To find »H,. The number "H, of homogeneous products of 7
letters which can be formed from n given letters may be found
by & method which will be employed extensively later. Suppose
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that the letters are a, b, ¢, ... If we form the product
(402 -+ 0% . @Y1 b b4 .- brar)

X (1 cx+ a2+ feram)...
it is at once scen that the sum of the required homogeneous
products is the coefficient of 2" in this product. Hence the
number of such products is the coefficient of 2" in the product

A4z+z . ) (It at 4. 4a).. N\
consisting of » identical factors, OV
If we suppose that x < 1, this is the coefficient of ,:Q)\}'ii’the
expansion of (1—a)-", Thus, by the previous result, a?'é'have

N n{n+1)(n+2)...(n+r_1) _ ﬂﬁ&:‘,
r o \\\v -
\\\ 4
&

4
/;
L

NS

W
woww braulib‘xﬂa‘r“y.org.in
7N

~

g\&\}
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CHAPTER IV

ELEMENTARY THEOREMS ON MATHEMATICAL
PROBABILITY

W begin with a restatement of our definition in simplified
form:

If there is a class of N letiers containing n letlers a, then the
probability of a lefter, specified as belonging to the class N, being
a letter @ w8 nfN. O\

By ‘probability’ in this chapter it is understood we~inean
mathematical probability. A\

Suppose, for example, that we have & group of symbole which
are scparable into the numbers 1, 2,..., 9, the lettérsa, b, ¢, and
the letters o, 8, y. A particular symbol is défiried as being a
member of the whole class. We may thenltate, on the defini-
tion, that the probability that bhysjzcmbol is a number is

9 N\ _
05373 §; the probability thathit 1s & Roman letter is
3 _ 1.1 the probability (U} it is » Greek ltteris 1= =
= 1; an i ek ==
157 5 . @ prodadLl ‘\:‘Jw%bll'aulsjbrary.org,m 15 ]

It should be noticed #hat the probability that the symbol is
let o848 03 3 1 12 mp
aletterand not a ngaberis =}~ = 75 =575~ 5
the Probability.timt the symbol, defined as & member of the
whole class, Shotld be a member of the class consisting of the
two subclagdes of letters, is the sum of the probabilities that it
is a m&gﬁer of each of the two subclasses. This result is an
illust}::a%ion of the following general theorem.
_ (Tnzomum. An object is defined as belonging to @ class of N
{_objects which contains the subclasses of objects @y, Ga in number
Ry, My, Tespectively, having no members sn common. Then if the
probabilities that the object belongs fo the subclasses @y, g be
separately p, and p,, the probability that it belongs to the combined
group of objects ay-+a, i PrtPe
The proof of this theorem follows at once from the definition.
Evidently the result may be extended step by step 0 give the
probahbility that an object of the class &V should belong to the

group a,-+-a,+ay, or the group @+ Gg+ g+ and €0 oIL
4260
E
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Tx. Suppose that we are given a book of N pages such that n; of the
pages each contain one printer’s error, 7, contain two such errors,...,
and generally, n, contain » errors. Then

the probability that a page has r errors iz n /N

the probability that a page hds at least = errors is (19, -} N;

the probability that a page has not less than r and not more than

& errors is (41, 4+ ... 0, )N,

For it is clear that if a page has, say, # errors, it cannot have & errors,
where  and s are unequal; so that the classes of pages so dofined havo
no members in common, and our theorem can be applied. Q.

It is obvious from our definition that mathematical proba-
bility is a number lying between 0 and 1 and that, since jtds the
ratio of two integers, it must be a proper fraction. We shall have
occasion later to extend the definition. "%

When the probability p is equal to unity, its méfimum value
is attained; in such a case the class to which the-Object belongs
is identieal in extent with the subelags. Itig desirable to avoid
referring to the case p = 1 as ‘certaintyfor this would seem to
imply a psychological state to whigh\eur numbers have not
necessarily any direct relevance. “(One may be certain of the
truth of a falsehood.) Similarly, the case p = 0 is frequently
referred to wmﬁMehﬁng*)?f@}@hood’, and to this the same
eriticism applies; in poing, of*fact, p = 0 is excluded from our
consideration, for such & value of p would imply that the sub-
class is not a memk@ of the whole clags.

Mathematical Expectation

Let the lebters oy, a,,... denote particular classes of events,
with whichareassociated numbers M, M,, . ... Forexample, the
eventsviy ght be the actual processes of measuring some object,
and My M,,. .. the magnitudes obtained. Then the probability
?f\'ooécun'ence of the event is also the probability of occurrence

o the magnitude,

If p, is the probability that the event a, will produce a magni-
tude M,, then its mathematical expectation, is defined as p, M.

Tpus,a person tosses & coin; if it turns up heads he is to receive
a shluing—otherwise he receives nothing. Then the probability
of winning = shilling is { and the expectation is sixpence.

More generally, in the case of n independent events, for which
the probabilities that the events will produce magunitudes M,

M,,..., M, are respectively p,, p,,..., P the expectation F
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associated with some unspecified event of the set is

E :rglp, M,

Hx. If n measurements, all equally probable, are made of the same
length, show that their mathematicsal expectation is the average value.

Tagonem. If p is the probability that & member of a class is
also @ member of a given subcluss, then 1—p 1s the probability that
it is not @ member of that subclass.

For if the class NV can he divided into subclasses having % and
N—n members respectively, and p = n/N, then the probability
that an object is not a member of the class (n) is the proba-
bility that it is a member of the clags (N—n). This prqb&'bi]ity
is (N—n)/N = 1—p, which proves the proposition,\For con-
venience we write ¢ = 1—p. 1f this relation is~written in the
form p+¢ = 1, it is equivalent to the assertionthat ‘it is true
that an object is either a member of a patticular subelass or
of the class of remaining objects’. N\

Ex. 1. The probability that a coin falis gither on its head or its tail,
given that it falls flat, is 1. If the probability that it falls on its head
is §, then the probability that it falls emits tail is also 4. Thus, the proba-
bility that it falls on its head =, 13(the probability that it does not}-

Ex. 2. In the example {FRGFLTIHL hrotaloiigsinthat & pago has
not more than r errors is oW -Fn+ .. }/N. Tho probability thet it
has no errors is 1—{n; ¢+ ..} i

Ex. 3. Consider two\dice each marked with the numbers 1 to a. It
is given that each Jies with & face upwerds; what is the probability that
hoth faces show(feis ?

To find th Potal number of members of the class of pairs of faces,
one for ea,c}i}ifc, we observe that each of the faces of one die may be
gr()upegl\\;wiﬁh each face of the other, thus giving X6 = 36 members
of the;*c}&ss. There is only one member of the class (4, 4); thus the
probgbility that both faces show fours is 7. We notive that & = X &
J\“B,,\’equals the probability that a face of one die is a four, multiplied
By the probability that a face of the other dis is a four.

Kx. 4. In a certain examination, 10 of the 30_students roceive over,
and 20 under, 50 per cont, of the total marks. It is known that two-
thirds of the candidatcs have written their papers in ink and the rest
in pencil. An examiner selects & NAMe from the list of 30: what is the
probability that the candidate selected wrote his seript in pencil and

received more than half marks?
These illustrations are typical of the following result:
Tagonem. If p, is the probability that an object belongs to the
subclass a, of the classes @y, @gse-es O and P, is the probebility of
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its belonging to the subclass A, of the classes Ay, A,,..., A, (which
are exclusive {0 @y, G .nr Gp), then the probability that zt belonga io

the combined class a; A1 is . F
Let us set out the classes in a scheme, as follows:

First class . . . R P 29 SN &
Number of members . . Mg, Ry Pgyeees Py
Probability . . . . P1.Po Pares Py
Second class . . AL Ag Ay A N
Kumber of members . . N, N,N3, l\
Probability. . - - BuPuPi. O
Thus p, = S N and P, = oy M i DR O
n1+n2+ _l_nr, +N "i‘_\ ‘F‘
Combined class . . . @4, alAz, LAy
Number of members . . 7 Ny, 1y N, 50V,

Total number of members, (n1+n2+ %n,.){N + N+ AN
Hence the required probahility is \ v

X, P b
ot R . ATEES A B
This theore‘;fn‘r}r, s etlmes ‘known as the Multiplication
Theorem, may be geg ge% etricaliy as follows,
A < B
Y
LN
N N
~05 H
&
'S) )
) 2
]
P F ¢
Fra. 1

Let ABCD be a square of unit side, and let DF, DG represent
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the lengths corresponding to the probabilities p, and F,. Then
if D¢ and DA be subdivided equally, each as many times
as there are members of the two classes ay, a,,..., e, and
Ay, 4,,..., 4, and rectangles are formed by drawing parallels
to DC, DA through the extremities of these subdivisions, the
required probability will be the ratio of the number of rectangles
within DGHF to the number of rectangles in ABCD. Since
the area of the latter is unity, the ratio is p, ;. The probability {
of such a combined class is referred to as that of a ‘double
event’. We note that, if p; and p, are the snccessive pr\éba:‘-
bilities of two individual events, the probability of ths deuble
event not oceurring is 1—p; p,. N

Ex. 1. In a certain bock of N pages, no page coqta.}’r}h ‘more than
three ervors; n; of the pages contain one error, ny cantain two errors,
and n, three errors, Two copies of the book m"e\o.pened at any two

given pages, Then the probability that both ges have two errors is
nZ/N?; the probability that the total numbexof errors is ¢ i
(nyrg+nf+nyng )N = {27":1.}7’3"{‘”5)/’1\‘723
the probability that the total number i3 5 is
(rgng+ny ""2”1\!?':"_‘ 2n,y s/ N

the probability that the total ugplier 6.0 VS the probability that

ir . s
the total number is at least?8 iz nj/N2+2n, nﬁf&"% the probability

that the total number iz notimore than 4 is 1— (n2+ 2n,ng)NC.
L 3

Ex. 2. Tchebycheffs. Problem. Two integers lie within the
mnge 2 to N. Whabis the probability that they are prime to
one ancther? MN</

Any numbetﬂ“iwhen divided by a suspected prime factor 7,
may have&' Temainder 0, 1,..., r—1; hence the probability that

it is disgsible by 7 is L. Thus the probability that both the
oy r
Sutegers are divisible by r is ;}E’ and, therefore, the probability
1
that both are not divisible by 7 is 1 — % It follows that the

probability that the two integers have no common prime factor
over the whole range is

(B33}

where p is the greatest prime in the given range 2to N.
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If N {and therefore p} is large, we may approximate to x as

follows. o
We suppose that x is approximately equal to the infinite

roduct '
P (I_L)(l_i)(l_l)...(l_l)...,
22 3 52 ¥2

where r is always prime.

Then -1 -1 -1 p
| D & T PR S U I N
x 22 3% ¥2 A

1 1 1 1 7
= (1+2_2+IB"')(1+§2+?"')"" O

and since any number is either a prime or & produet of primes,
A\

it follows on multiplying out that
1 1 1 1 W 2
e, R Bt 2N T
- 1+22+32+”'+n2—{’:‘ & t

g _ 0
=> &pprox1mat?ly; D

Tchebycheff’s problem is soitetimes stated in the form: fo
find the prolaa‘p\i\}_i&grgbﬁgl_téptsgi:g%ion m/n is in its lowest terms,
m and n being any two integers.

Note that this progést does not give the value of the proba-
bility (which is ei{eséaﬁly a proper fraction) but only an
approximation te,it.

In the following example the actual fraction is caleulated for
the numbers.between 2 and 20 and between 2 and 30.

Thus svéfind that the number of pairs of numbers between
2 andr2) “with no common factors, is 108, The total number of
paitsas *C, — 171. Applying this result to find an approxima-

~$ion to w, we have .

4 6 ios 12 . .
== 171 — 19’ 5ViNE 7? = 9-5, and 7 = 3-08,

For the range 2 to 30 we find that the number of prime paira

is 248, while the total numbers of pairs is 2#C, = 406. These
data give

1]
Hence 2 = — =
o

6 248

— ™ 206’ whence 72 = 9-82, and = = 3-13.

¥ Bee Hobson, Plane Trigonometry,
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Ex.3. An interesting application of elementary probability is
found in the work of Bunsen and Kirchhoff in connexion with the
discovery of the presence of iron in the sun. By comparing the
spectra of sunlight and incandescent iron vapour it was found
that, to the degree of accuracy given by the instruments, 60
bright lines coincided in the two spectra. Now the average
distance between the solar lines in Kirchhoff’s map was 2 mm.,
and coincidence for his instruments implied that a line from the
iron vapour must full within } mm. on either side, Thus the
probability of casual coincidence for each of the 60 lines( was
2.3/2 = }. Accordingly, the probability of easual coindidence

for all 60 lines was 2%}, or one in a miilion million mfiﬁibns. It

LS
should be noted that in this analysis iron i{\@&fined as that
substance which gives the above 60 lines in Khe spectrum.

Similar considerations with regard to thig)coincidence of the
spectra of solar, Iunar, and planetary 'Iight can be used to
decide the probability that they are 4lbof the same origin.

"™
<N

*

EXAMPLE% \.\Q%SH%PT ER IV

ibrary.org.in
{In the following examples jt\is to be assumed that when the phrase
‘& eoin is tossed’ is used, it igSmplied that the probabilily of the appear-
ance of & head is 3. See Klﬁo’Chapter V.]
Ex. 1. What is the ‘p%bability of a penny purning up heads at least
once in » throws? 4

s . ) o .
The probability that it turns up tails every time is on Hence the
I

2n’

Ex. 2,:’.\If m coins are fossed and all the heads are removed, and then
the ;'Eigia.ihing coins are toased and the heads removed, and so on, what
i the probability that all the coins will he removed by or before »n
tossings ?

We may imagine all the coins tossed » timnes; we 'Lhuf: rcquire. the
probahility that each will turn up heads at least once in n tossings.

& . 1
probabiﬁtNhﬁt it shows heads at least once is 1 — -

. . 1y™
Hence the required probability is (l - -—-) .

S

Ex, 3. (Pascal’s and Fermat’s problem.) Two players, Wit%‘l egual
probability of winning a point, agree to play a game for 5 pom.ts.. If
the game rnust not be drawn, find their respective chances of winning
8% any given stage of the game,

Q.
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Ex. 4. An urn contains b black and w white balis. If » balls are
extracted together, what is the probability that « of these are white?

The number of waya in which » balls can be extracted is #+*C,, The
number of sets of n balls which contain « white halls is

LI £

¥x. 5. A number is chosen from each of the two sets 1, 2, 8,..., 9;
1, 2, 3,..., 9. Show that the probability that the sum of the numbers
shonld be 10 is &, and that their sum should be 8 is 5.

Ex, 8. If in selecting & number from the set 1, 2,3,..., 9, 7 is cho
twice as often as 3, 3 twice as often as 5 and 8, and § and 9 twice\as
often as 1, 2, 4, 6, 8, what is tho probability that the sum of two n’u\mbers
selected will be 107 AN

Ex. 7. A red card is removed from a pack of 52; 13 cards'are then
drawn and found to be of the same colour. Show tha#l the odds are
2 to I that the colour is black. \\

Ex, 8. A set consists of » counters. What iz Phe) probability that
a selected group of these of unspecified number edusists of (1) an even
number of counters, (2} an cdd number of co rs?

We have to find the total number of memf;@i's of the groups that can
be formed of 2, 4, 8,... counters for the case {1} and of 1, 3, 5,... for the
cage (2). g 7

The total number of ways of fom;iné proups of 2, 4, 6,... i3 respectively
ny, "0y, ... and for forming thé:gmups 1, 3, 5,... s

wwwdbraulib?ﬁﬁi’yﬁﬁag.fﬂ'ﬁ,... .
Thus the number of member=\of the class of even groups is
O+ PG = 211 (p. 45)
and the number of mémbers of the class of odd groups is
AN Pt = 27,
while the total pg"mber of members of all classes is 2°—1. Thus the
probability of theselected group being odd is greater than its being even.

The diﬂf@m{flc between the two probabilities decreascs as n inereases.

Ex. 9. Krom a pack of 52 cards an even number of cards is drawn.
Show that the probability that these consist half of red and haif of
blagkis” 591
.\ 3 {_'__.__1}/(251__1).

\ 3 {261)2
The number of ways in which an even number of cards can be drawn s
B0+ 520+ 320y, = 2911 (p. 45).

S: r;he_ae, the number of groups eonsigting half of red and half of black
s is

521t

BOTL WO 80, = _;%_
Hence the result. (28Y)

Ex. 10. i irling* . . -
pr‘obabilhg;y_ Using Stirling’s theorem, find an approximation to this

1 (p. 46).
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Ex, 11. A pack of 52 eards is eut twice, & cerd drawn and replaced;
show that the probability of ebtaining aces cach time is 1/269,

Ex. 12. 4 and B stand in & line with 10 other persons. What is the
probability that there ars 3 persons between A and B? What would
be the probability if they stoed in a ring? '

Ex. 13. Find the probability that a month coniains portions of six
different weeks.

Ex. 14. Two identical urns contain respeetively » and n’ balls; the
first ure contains a4 whife balls and the second ', If a ball is extracted
from one of the two urns, what is the probability that it is white ?

It must be noticed that the extraction of a white ball from the first
urn is the result of two eircumstances: (1) the choice of this urndrem
the two identical urns, (2) the extraction of a white ball from ‘t}lig urn,
supposing that it has actually been chosen. The probability ofi(1) is 4,

that of (2} is g. Thus, the probability of extraction c{“a white ball

from the urn is é E; and similarly, the probability\of extraction of a
’ AN
white balt from the second um is L %; . Hence ﬂ{ie,\required prabability,

2
Lo cae NN fo
which iz the sum of these two probablhtws,"}s sl 4+ el &

Ex, 16. Each of two bags containsj;ﬁ"ahillings and » sixpences., If
& coin is drawn from each bag, sh W‘t}ﬁ?_ the J)‘robabilit-y that both
coing are shillings iz greater aﬁ“f&;’&%% Icﬁ?é%vaﬁé{r\lro shillings from
a bag containing all the coins, /"

Ex. 16. In a card gams inesvhich the dealer’s last card determines the
trump suit, find how % hands must be dealt in order that it is more
likely than not that apsome stage the deaier will hold all the tm.u.nps.

Bince the dealer always holds one of the trumps, the probability of

N\ ¢ 1 .
any one deal of\the required type is it say, where ¢ is a large
¢ 1z

numhber. VY )

The pm&bility of not holding all the trumps is thus 1— . After
« deald;this probability is

m‘} o 11 1)——1:(—-2,’:)
N (-3 = (-5

= g~%/¢, approximately.

For an even chance we require e™#* = §. _
This equation gives z = clog2 = 101, approximately.



CHAPTER V
BERNOULLI'S THEOREM

1. Bernoulli’s Theorem and its extensions ]
Ix dealing with a class of objects or events, we shall use th
term ‘population’ to describe the original class from which
the subclasses are to be formed.

Suppose that we are given a population of ten counters.
divided into two subclasses which we represent by four blac¢k
counters b and six white counters w. What is the probability
that among three unspecified members of the population’ just
two are members of the subclass w? N

We may proceed as follows. The probability that'a member
of the population is a member of w is §j = §; Weyce the proba-
bility that two members, as a group, are members of w, is
$x2. To satisfy our conditions, the thi;'d\\member must not
belong to w; thus the probability requiré& would appear to be
3% Ix(1—2). But the order in which the three members have
been considered as belonging (or.mot) to the subelass w is not
exhausted by hisbpartleularapgucess; it could be either the
second or the first member wliieh is excluded from . Thus the
total probability is

BxExEx (1—;\;‘); or 3,XEXIX(1—} = &L
This simple problem\s an illustration of the general result.

Bernoulli’s Thedtem?

Let a poptiigtion be divisible into subelasses b and w such that
the pro!?w{a;l-‘iiy of any member of the population being also ¢
membef\of w is p. Then, of n objects defined only as members of
the, population, the probability that of these are also members of

GG (1~ T,

For the probability of » members of the population being
members of w i3, a8 we have seen, p*; the probability that the
remaining »—r members are nof members of w is {(I—p)**.
Thus the combined probability of the double event is p(1—p)* .
But the » members of the group of » initially considered can be

+ Ininterpreting the probability pin the following theorem, reference should
be made te the discussion on g prieri probability on p, 19.



Chep. V. § 1 BERNOULLI'S THEOREM 59

exhaustively selected in *C, ways. Then, since the total proba-
bility required is the sum of the separate probabilities, it is

equal to CpT(1—p)*T.

Ex. 1. Thirteen cards are drawn one by one from an ordinary pack of 52,
each card being replaced immediately after drawing: to find the proba-
bility that exactly 3 red cards arc so obtained.

There are initially 26 red and 26 black cards in the pack, so that the
probability p that & card zhould bo red is 3. In our theorern, as spplied
to the present problem, tho group of objects to be considered is in
number # = 13, and the =ub-group is in number r = 3. Henece the

3 138 ¢\
required probability is 1309@) (1-—;) = };;—3 = ;%:6 = 2_18’ a%)[;i‘&xif
mately. N

Note, in contrast, that the probability of finding 3 red cardsn a hand
of 13, as ordinarily dealt, s 280 28(7 /5%, ;. 'm'\\
Ex. 2, What is the number of red cards, in such Bg\Sxtrastion, for
which the probability is greatest ? N
p* 1\ 13 1a~r
Wo have to find the value of » which makesg ’13??, :2;(1—5) have its

greatest value. . \,

Evidently this is attained when r = E},t};‘..?.

Ex. 3, What is the probability &;\gﬁglggﬁ% hap e of the eards
should bhe red ? ™"

This is the aum of the probgbi].iﬂes that the number of red cards
should be 0, 1, 2, or 3. AN

Ex. 4, Find the pmb&iﬁt}; that the hand should contain at least
three red cards. \

~

Ex, 5. What is ¢He :ﬁrubability that, in 13 drawings, with replace-
ment, an ace shm,{dn be obtained four times?

{ .4 1
The Ol‘iginklz"ﬁ‘ﬁbability that a card should be an ace is 5 == 73

N\ B 1412
Hengethe'required probability s 18 -1?(1—3
y 0\' ¢ . .
At should be noticed that the fact that the four specified cards are to
86es is quite irrelevant to the problem; the same p[:Obﬂ.b]llt_Y would
be found for the oceurrence of any four previousty indicated cards.

)s — 0-02, approximately.

From Bernoulli’s Theorem we at once derive the following:

TurorEM, If p is the initial probability that @ member ?f_ a
Dopulution should belong to a specified subclass,.tke pmbab‘dﬂy
that out of n members not more than v belong to this subclass 13

®Cy(1—p)r 40, p{1 ,_:p}ﬂ—l_}_‘"_!_ngrpr(l__‘,p)n.—rt
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With the same hypotheses we have:

Tmrorem. The probability that not less than v members belong
to the specified subclass is

nCy pr(1—p)r =G P (I =) G P

Fx. 1. Out of & population of pennies, of which half lie head up and
half tail up, & class of 2n members is defined. What is the probability
that thess show heads m excess or defect of ®, by a number £?

Evidently the required probability is

21‘C’ﬂ_,p""*{'1~—p}”i"—{—...—}—2“C’n+tp"+‘(l—-p)“‘“*, where p = L.

This type of problem is usually stated in the form: A penny is togsetd
9 times. What ig the probabilit.y that the deviation from nghggds

<hould not exceed ¢? Note that in attempting o identify these two
problems we tacitly assume that tho sample of 2n tossings is drawn

from a larger hypothetical population containing precisély"the sams
number of exposed beads as tails. KA 4
Ex. 2. With the same interpretation of the termg, show that, if a
penny is tossed n times, the probability of not moze than 7 heada ia
I

1
ﬁ(ﬂcﬁncﬁ""{"ﬂ‘c‘*\?‘ <

Applications of Mathematical Pmbqb:@'f.it;};

Tt will be observed that the 1@H§ﬁage in which these theorems
have been dovelipddagtifirehye dogim in which the examples have
been couched have been suéh as scrupulously to avoid all idea
of experiment. If we aré'\to restrict our investigations in this
way we shall certainﬁ.ﬁoid the error of confusing psychological
expectation with mathematical probability; but we ghall also
lose the possibilitgnef applying the theory to actual cases. What
we have to dis{fp\w,rer are the circumstances in which such applica-
tion is legjti.:m\&te. Tt was pointed out previously that the study
of psyaia}t@llogical probability ought logically to follow in the
wake,gf the mathematical investigation. At this stage, there-
forey “we propose to examine briefly the restrictions hitherto
imposed, and to see if they can be circumvented.

It must be understood, then, that when we say that ‘a card
is drawn from a pack’, we mean in fact that we are to discuss
certain properties of an entity defined only as a member of the
pack. In the same way, when we say that an individual tosses &
penny » times, we mean that n events are under consideration
and that each of them may belong to one of two classes, head
or tail: that is the defining property of the event. If the result
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is used in any particular case, the onus of justification is on the
user who asserts that this defining property is the only relevant
one in the circumstances in which he applies the result.

In this connexion we may remark that in certain circum-
stances it is possible to introduce into the defining properties
conditions relating to the mode of selection or arrangement
which cnable the mathematical treatment to provide an answer
which is closer to the facts than the result arrived at om a
gimple hypothesis. For example, suppose that there are tens
counters in a row: five black on the left and five white on
the right;; if all that is asserted about a counter is that it belongs
to this group, then on our definition the probability of it§_being
white is L. If, however, we assert that an individual hgs-sélected
a counter, then the fact that individuals more ﬁ'eeluéntly choose
with their right hand than with their left, and thus more fre-
quently choose an object to the right of the centre of the group
than to the left, will vitiate our original calotilations and we must
introduce a new factor which takes this humnan bias into account.

Now suppose it is known that thel choice made by an indi-
vidual justifies our statement thatthe probabilities of choice
of the counters, from left to,'.ﬁ'gh't, are proportional to the

Tumbers 1,1,1, 1,258 3,4,4,2,1.
(blagk) (white)

Then the problem ~Be recast in the form: Given a set of
20 counters of Whi(ﬁ:’}% are black and 14 are white, the proba-
hility of a White‘({c’)ﬁnter is 1¢. Thus, by introducing ‘weighting’
factors to représent the bias in ehoice of the counters, we have
brought the ‘original problem dbvawbibrivy arguality. In the
mathematieal problem, these weighting factors must be sup-
posedigiven; actually, they are given as a result of previous
'exgaé?iﬁlent, so that in such a problem they become known &
[rEore.

Ex. A sniper finds that, on the average, he kills onee in three shc.)ts.l
He fires three times at an enemy; on the assumption that his @ priore
Probability of killing is }, what is the probability that he kills him?

Here we roquire the probability that at least one of the shots should
be a hit. Since p — }, the required probability is

30, HAPHACHAR) (P = 22+
Altornatively, we may proceed as follows. The probability of not
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killing at the first attempt is §; thus, the probability of not killing in
all threc attempts is (3)3 = &% Hence the probability of a hit is

1—-?37- = é—;?.'.

We note that there is no contradiction between this result and the
statement that p == %, for the probability of killing with one shot only
is }: after that the probability increases.

Greatest Value of "Cop"(1—p)* "

To determine the value of r for which the Bernoulli proba=
bility, B(n,r) = *C,p"(1—p}"7, has its greatest value, where ris
an integer, we cannot legitimately discuss the variation Qt:B@, r)
as a continuous function of r; we are not seeking for a mawimum
hut for a greatest value (if it exists) in the :angg()"@ r<

Accordingly, we require to find the value ofwgsu’ch that

B(n,r—1) < Bn,) > Bln g3,
i.e, such that N
Qg1 —p)r Tl norpr{l_p)nfré, 0l prH1—p)n L
Cancelling out positive factors in common it follows that
np+p = r Zwp—(1—p).

Since p and 1—p are fractions, we thus require that r should
'fJe equal to, np, jf this rrg}m};i;%-j s ini_:-egral, or to the sma]lelst
integer greater than ngs £ ap 15 not integral. We thus obtain
the following result., ()

The greatest wl@f}\\of Bernoulli’s probability B(n,r) is obtained
by taking r to bepg, or the least integer greater than np if np is nol
integrod. O\ '

Ex. How{many aces are ‘most likely' to be found in 13 g1ecessive
rlm.wing‘.{,;fn'llr:wm'] by replacemonts, from a pack of 52 cards?

Ffirs’theneralization of Bernoulli’s Theorem
"Nt a population be divisible into subclasses wy, wy,..., W, Hhe
robabilities attached to the subclasses being py, Py, Do Them,
th?, probability that a group of n members of the population, other-
wise unspecified, should contain r, members of wy, vy of Wy and
T, of wy, 18

_1,.._11.!___})';?'; ”_P"s,
. rlrglir,! 8
W
ere. rytreto v, = n

For, the prob.a;bi]ity of r, members of the population being
members of w; is p7t; of 7, members belonging to w, is pY, and
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go on. Thus the probability of the combined event is p% p7 ... p.
But the required probability is the sum of the ways in Whlch
this eombination can be formed subject to the eondition that
the total number of members is n. Hence we have to multiply
2} p3 ... 7% by the number of ways in which a term of this type
can arise by n-combinations of all such p’s; such a number is
identical with the coefficient of p} % ... p}s in the expansion of
(p,4pat--+2:)" (p. 47), whence the result. .

The original Bernoulli Theorem follows from this by puttmg

=P P =1—p, 1y =17y =n—1. N

Ex A pack of 10 cards consists of 3 aces, 2 kings, 2 queeﬁs and
3 jacks. All that is known of them is that on eight successive ogcasions
the cards have been ghuffled and the top card each timerégposed. It is
required to find the probability that an ace will have Bb\n top card on
two occasions, & queen on three occasions, and a jack'Qn three oecasions.

If we denote by wy, Wy, Wy, and w, the respectwe@uhclassss defined by
the aces, kings, queens, and jacks, then in the p@kus notation we have

n = 8§, 7y = 2, ry = 0, o= 3, g =3
P =vm Pr= 1,_0:’:‘ ’Pa =3 Py=Ts

Hence the required probability is &N

»

8! (3)2(2)( )(4 8127 108,864 1
21013131 \10/ 1o/ \10/w dblaLﬂlﬂBralyoig"'m o100’

spproximately. N

Alternative stateme c}f Bemoulh & Theorem. The probability
that an event with ]_;‘!Kltlal probability p occurs exactly r times
in n trials is the 7thi-term in the expansion of (p+¢)" in ascend-
ing powers of g, where ¢ = 1—p.

1t foHothat the sum of the probabilities for all values of r,
iz umty.;\\

Agam, the average value of 7 in n trials is
"N

R

Y n, n—r
9 rgu C.pg"".r.
Now  (pt = go"ﬂ}p’qn"-

Differentiating this identity with respect to p, and then putting
p+g = 1, we have

n = i ﬂor,rpr—lqn—r,

r=0

and thus np = > "C.pghT.r.
r=10
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But this is also an approximation to the most probable value
of ». Tt follows that to this degree of accuracy the average volue
of r is the most probuble value when all possibilities are taken
into consideration.
Case of Probability varying from one Trial to another

It has been assumed throughout the foregoing analysis that
the successive stages in the withdrawal of & sample from a
population are not accompanied by any change in the probac™
bilities of its subclasses; this is the case when, for exg,mple,
the population consists of a set of black and white balls,“and
the ball is replaced after each withdrawal, or where the popula-
tion is generated by an operation, ag in the tossingof avcoin. If,
however, this is not done, the proportion of blacktérwhite balls is
altered at each stage of the process, and the fmutial probability of
ablack or white ball becomes a function of; th,number of gamples.

Ex. 1. If the probability of failing at t-}}e}‘@ﬁh irial is 1/{1+n}, what
is the probability of succeeding at least ohee in the first m trials?

Ex. 2. If the probability of failure'gt the nth trial is 1/2%, find the
probability of succecding at least qr:f(,‘e in three trials.
Second Generglizatipn of, Bergaulli's Theorem

Instead of referring ta 8 population and the probability of
its subclass, wo may gp’eék of an event and the prebability of its
success in one or more trials (corresponding, for instance, to the
extraction of ong or more white balls from an urn containing
black and whit€ balls). Suppose then that we consider n inde-
pendent events whose probabilities of success are p;, py.... br’
thus t!}ts\iqbi'rcspcmdjng probabilities of failure are g == I—py,
gs = I5Pg.s 45, = 1—p,,. Then the probability of obtaining
exaptly r successes in the compound event is

2 PP PueoGtmees
the summation extending to ail products of » different symbols,
?ach containing # p’s and n—r ¢’s. It will be noticed that this
is the coefficient of " in the product

Heonce, (p1x-+q)(pa2-gy)...{p, x+q,)-

Ti_a,e Probabs’li_ty of obtaining v successes in a compound event,
consisting of n independent events, is equal to the coefficient of &
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in (P4 g ) (P - Gg) . (P 2+-4,,.), where p,, q, are the respective
probabilities of sucecess and failure in the sth event,

Ex. Given three urne, of which the first contains 3 white and 4 black
balls, the second contains 2 white and 3 black balls, and the third
contains 3 white and 5 black balls, what i the probability of obtaining
one white ball in extracting a ball from each urn ?

Evidently the required probability is the coefficient of x in

Go+ e+ HEz-HE), i 3

2, Bernoulli’s Theorem and the normal law O\
Stirling’s Theorem O

We have already noted {p. 44) the use that an appréximate
formula for »! may have in evaluating probabilitieg> In what
follows the use of such approximations is essehtial.

y .\\:

$
%4

..x\‘

X

]

org.in

x

OO\ o1 2 3 4
\Y Fe. 2.

¢ .\"~ 3
\Wé begin by finding an approximation, for large values of

n, 80 log n! = log n+4-log(n—1)-...+log 2.
Consider the curve representing the function
y = logzx.
If ordinates be crected at = = 1, 2,..., n, then the sum of
the trapezia determined by successive pairs of ordinates will be
less than tho total area between the curve, the nth ordinate, and

the x-axis.
360 i
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Thus

f logw da > 3(log 1 -+ log 2)+3log 2 + log 3)+...
...t3(log n—1 4 logn),
ie. [xlog x—a]} > log 2+ log 3-+...+log n—Llogn,

or nlogn —n-+1 > lognl—logni,

or log nte—"+1 > log nin—t.

Since the logarithms are positive we have :\
pre—mtl = n'rn—-i ) \}\

or nl < prtbe—n+l, x N

It is clear that to obtain a closer appno»x‘kﬁat.lon to n! we

require a more exact estimate of nl/a? 3Ry
Write u,, = log{n!/n"tte-"). Then ¢ e\

(n+1I) ,‘?@?\r*e—“ .
Uy~ Uy = 10 (n _{_1)n+38—n—iJ.‘ 7!

n M%“
=1 i—log{;- BN,
www . dbrau %t_j;r Ig.ii\
— l_ﬁi‘i\’-‘”"g@ﬁ)

LNV B B
=3\] —_——— =
\) (nt3) n 2n2+3n3 4n“+
A/ : '
O 1 1 3 1
R T R T T A T
AL
’ 1(1 1 1 :
A\ =15 ﬁ_ga“f';;“;a ...}, approximately,
o)
~\J 1 )
) = — - approximately,

12n{n+1})

At 2
T 12{in+1 =
Accordingly we may write
1
o Ay
. T 1gn’

where 4 is an unspecified constant.
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Hence we derive
—lnT_ — Relllzn
P T ?
where B is another unspecified constant.
To find its value we have only to use the above approxima-
tion for n! for & particular case, say % = ®. This gives
B = %{e—ﬂ’ approximately.
There is, however, a more general method of approach togthe
evaluation of B. We begin with the well-known formula~\ -

=2 1= o
smm:_m:( 2)( —2—)( —3—2)“~ \

L 9

When @ = 1, we have o
- 1 1 1 ¥
[t %
9 1.3 3.5 5.7 _ 12.32,520%.  1%,28.3%.40..
OF LT ergE v Torgmge. 2n4adghl
»."1 2
Thus g_. lim . [Zrsf1) ]

7 e QU DI
Tnserting our approximatién féid%”a%’ﬁhﬂ PHmi

B(2n-4; 1{‘?’1;3 exp(—2n—Iexp {12(2—?17—1—5} ]2

SN

= lim T
% . 2;; l?.,{.2n+ I)I:Bn?i,-{—{' exp(_ n)exp(m)]
1 1} (2n-f1)n+2
= &szexp{ 4n—2—[—4n—{——=--—6(2 4—1)"—3_??,} - inpini2
‘.’. 1 2n+1 in+2 4, l 2
m \h'_ B282hm - ( 2n ) = 32e2iﬂ(1+ ,_) (H_ 2n
A N
— _l?é‘
Hence B = ,/(27) and, finally, we have the approximate formula,
for large values of =,

e k
nl = J(2m)n" .exp( n+12*n)

=,/ (2w)n“+ie—“[ 14 1%1 ] , approximately.
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For comparison, it may be remarked that we have already
found that n! < phtie—n g

Approximate Value of Bernoulli’s Probability (case p = )
Suppose that we are given a population of coing which shows
an cqual number of heads and tails; we seek the probability
that in a large sample of 2x coins there shall be n+r heads angd
n—r tailg, that is, that the excess of the number of head®over
the number of tails is 2r. In this case, the probahllxt_} pofa
head or tail is 1, and Bernoulli’s probability ggv‘es us the
formula

%

— 2:16\‘n+r(%)n+r(l & .“'( ‘..}:

(2w 1, Y
() n—r)t 22
Using Stirling’s formula we write s N
(Zn)! = J(2m. 2n)(2n)2"e“2“":\= 2% Hlp i +o ol

(nt7)! = f{?ﬂ(n—}—r)}(n,_{_r)nwe—n -1

(n‘—?")f —] \;{QF(R_T}}(n_T)n‘re—n H‘
&0 that »Wv- dbrauhbl 3T‘y'01 g.in

n_f_r)T(n_.g-)F& Dore— 2“‘(?‘3*}-?‘)” H"H(?‘l—?')“ —r+i
3 \
< N — 2«6‘2"(?12—?‘2}“”(”'_{'?)

£ )

ne n—
NS/ .
x,\'“.‘ = Zpe-2rp2nizf] __ 7" et ity "l
\Y n? n—r,
H@ﬁ%’“
=™ 2!
"\n -3 }’) :_ {..r?'l.) . l

22}3.+1n2.a:,+§8—2u oy —n—4 n—rir 1
. i — 1 . oL —
«3'\-""7?'8_2”??,2”""1 '??/2 ?i‘,—f-?' 22:!,

1 ER T r—4 —r—4
(I

It will appear from the more general Investigation on p.71

that, when rin is small, the approximate value of Pis — ! 8"’“‘-

\,{m)
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Accordingly, P = e~ ig the approximate probability

i
(i}
that, in a sample of magnitude 2», there will be a discrepaucy
of r heads above {or below) n, provided r/n is small in com-
parison with unity.

A PS

_~“ r
'4 '3 "2 -1 O 1‘ 3 2 3 4
Discrepancy r £V
Size of sampley= 2n

Fra. 3.0
™Y

In a sample of size 2nw‘&hb”i;?i§tﬁ§d®ﬁity-@mmthe number of
heads will lie between n+-§and n—s i therefore approximately

y=48 l{”"\
P o= N L2 er wheres =0, 1, 2,.., 8
* z «-*@55)

r=—8%
The general vgriﬁ.}ii'én of the term to be summed is shown in the
figure. ::\'“2
To estindate the value of P, we write

N \\ r = zn,
‘g;sgl(sﬁfce the increment of r is unity,
\\ ) r+1 = (x-4+8x)vn,
so that 8z = 1/+m. Thus
r=alvn shim
NS . 1 o .
P = e = - e~ dx, approximately,
A N
z=—sfin —afvn
an

= —\?—1; J. 8'_x‘II dz.

0
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The function % f e * dx is known as the Probability Integral
NI

0 »
or the Error Function, and is denoted by Erf 2 (see Appendix),

Ex. 1. From a population containing equal numbers of boya and girle
a gample of 1,800 is selected. Find the probability that the number of
girls will differ from the number of boys by more than 100,

We seek first the probahility that this exeess will not oecur, We have
2n = 1,800, 3 = 80; then the probability that the number of mrls i
between nds = 960 and n—s = 850 is .

2 A
\
50/4500 53 i\
——2— e dy = —-2— e~ dr. ™
o Ao N
0 i -

From the table (p. 197) we find that Erf(5/3) = 0-0816,
Thus the prebability that the difference is greator than this is
1—0-9816 = (0184, or 18 chanees in 100,

Ex. 2. If we define a ‘fair sample’ of sié8%n of o population of coins
as one whoso discrepancy from n }1eads~}s excecdad only in 5 casos out
of 100, what is the diserepancy allowabls in a fair samplo ?

Here we have to find ¢ in termg 0f n from the definition that the
probability of a fair samploe is JE{)’le:O' = 0-05,

S JRE]

o V2
Thus www,db%ﬂjﬂlﬁﬁfrgg};nj = dx = 0-05,

"y b

From the tabie We:ﬁ’hd that s/+n = 0-044,

Ex. 3. What sh%&ho the disercpancy such that as many cases have
e

loss than this assgreater ?
Here we require Erf(s/a'n) == 0-5,
whence AN §/vn == 0+48,

Thus, if 2= 800, 2 = 9.6, i.e. the range (390, 410) should ineluds
about&il} the number of cases,
ExX™! A penny is tossed 100 times, giving 45 heads and 56 tails,
Oz}j the assumption that this is a sample of a large population containing
" e'ﬁpxé.llnu.mbers of heads and tails, find the percentage of cages in which
\ ‘@'deviation at least asg large as this will be expected,

We have 20 = 100, & — 5, so that the probability of such cases is

g 0707
1—-= —t e 1. =0
Py f e dxr = 1—0-68262 — 0-31738.
b
Hence the bercentage of cases is about 32,

The General Case

We Pass now to the general case in which the probability of
a certain subelass of g given population is p. We have already
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shown (p. 62) that out of a sample of size n, the most probable
number of members of the subclass is #p or the least integert
greater than np if np is not itself an integer. We now seek the
probability that in a large sample of size n the number 7 of
members of the subclass differs by an amount x from the most
probable number.
The probability of just » members oceurring is

nI ta n-—r
P = e A\
Write r = pn—+x, n—r = {(I—p)n—2. Since n is large, r islargs
also, provided that z is small compared with np. PR Ny
Using Stirling’s formula and expanding in descepding‘powers
of n, we have AN

log P = log n!+(pn—f—a:}logp—i—{(l—p)nﬂx}log(i—p)—
—log(pnt=)iBlog{(1—pin—a}!
Lo x(1—2p)}

= —3}log 2mp(l—pin— —

B\t 71 ¢ pI=)
Thus P = 1 -aﬁ{z’:rﬁlﬂiiﬁz}thl—pa

JE(i—p)pn}” (SN
If jz| is much greater tHaRvdbrapibrany cag meglect the term
(1—2p)x in comparison{ with z?, in the exponent. We then

obtain the appromn&wn

, approximately.

1
R —n
& JEmi—pm) |
to the probability that a sample of large size = will contain
PR Qei{ibers of the subclass whose probability is p, where
N

X on 2 el > [1-2pl.
,Th&'ii"result is also valid for x = 0, for which the probability is
‘Amaximum; that is,{ pn]is the most probable number of members
\f the subclass, and the probability that a sample of size » will

have just this number ig

—aY2np(l-)

1
J2ap(l—pn}’
Thus, the probability that a sample of size » will have a
number of members of the subclass lying in the range (prn—s,
pnt-s) is the sum of the probabilities that the sample will have

t Thig will be denoted by [np].
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precisely [pn]+-s, [pn}+s—1,...,. [pnl—s, members of the aub-
class. Thus the required probability is

= 1 exp{_xz—}—(l—-Qp)x}.
m_Z N2mp(l—pm} Znp(l—p)

We notice that

s _x2+(1—2p)x} ~
Z eXP{ 2p{l—pin \

= Z (gl 1 30 3): “L} :

{

—s

Since the summation extends to equal numpers of positive
and negative terms, the second term in the 'iﬁ‘&ckets vanishes,
Thus the probability required is approximately

A Dt
Z - 1 ex], {4\ i }
ViZmp(l—p)n}  \\2rp(1—p)

—2 \

Write y = 2/\{2np(1—p)}; then since  increases by unity,
vehave sy — (whhiznp(1—p)),
\;\rw\\r_dbra&}{j?l'ﬁa“:y.ol‘g.ii‘l

ii\/m"i = J2mpi—pny
The summation thqiq"takes the form

so that

afdltnp(i—p) K .8 BNEAD(1—p )}
~‘§9;”'\,—y = f e~¥" dy, approximately.
~ s/ 1YY TN

7N\ .
This 1:({8(1111'; expresses the probability approximately in terms
of the‘error function.

_(Thus P = Erfls}/J{2np(1—p)}].

M
\ "Ex. 1. If there are 32 ferales to 30 males in the general population,
what would be the most probable number, ceteris paribus, of women
students in a university population of 1,807 What is the probability
that the number of women students will be less than that number by 40?
The probability p of an individual being a female is p — =1L
We have n = 1,800, ¢ = 40, 30 that

8/J{2np(1—p)) = 40/30, approximately.
From the table we find that Erf(4/3) = 0-94. Hence the probability
that the women students exceed the men by less than 40 iy Very great.
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Ex. 2. Defining a fair sample a5 one whose discrepancy & from np is
in cxeess or in defeet in only 10 per eent. of all cases, we have

_ Erfls//{2np(l1—p)}] = O-1.
From the table, s = J{Znp(l—p}} x 0-09.
Thus, if p = & # = 5,000, we obtain
8 = (100, 4. &) X 0-09 = 27,
Also mp = 500. Thus a fair sample should, on this definition, have no
more than 503 or no lesa than 497 of members belonging to the subclass.

EXAMPLES ON CHAPTER V "\

Ex. 1. If a penny is tossed. 3 times, what iz the probability of obtains
ing 2 heads? 2 AN

Ex. 2. What is the probability of throwing an ace cxactly ofice in
6 throws with a die ? A\ )

Ex. 3. If m dice are thrown, show that the probability of ‘pbtaining
an even number of aces is #{14-(£/™}. 4%

Ex. 4. Drawings are made from a pack of 3 cards, (a} which 1 is red
and 2 are black, and each time the card drawn isdturned to the pack.
If 10 such drawings are made, find the prob&bili@'t}lat n red cards will
be chosen {n == 0, l,..., 10}, and show tlla,t{jé’is most probable that
n=3 "N\

Ex. 5. Find the probability that in 8\throws of a die, the numbers
I, 3, 5 turn up 2, 3, 3 times respectivé]‘y.

Ex. 6. A pack of 2n cards, » of hich are red and n black, is divided
into two equal parts, and a cardjd’naﬁm from each. Find the probability
that the cards drawn are of\the same colour, and compare with the
probability that two cards\firawn from the original pack should be of
the same colour. ¢ &\J

Ex. 7. A coln is to xd m+n times (m > n). Show that the prob-
ability of at least‘m:eonseCutive heads is (n--2)/29+1,

The requircd\pLobability is the sum of the probabilities that there
should appeqx\éxhctly m, m+1, m+2,..., m-+n consecutive hoads, Now
a seics of prgonseoutive heads ey Bogifth the frgt sgoond (14 1th
throw; “§ince m > n, there cannot oceur more than onc such series,
The p’r,?)babilities of the first and last of these cases are evidently 1/2™1,
andvof the others 1/2+%. Thus the probability of a series of exactly
‘mreonsecutive heads is
A 2/2mHL L (n—1)/27H2 = (- 3)/27H

Similarly, the probability of a series of m-1 consccutive heads is

(n+-2)/27+3, and so on, up to m+n—2. Finally, the probability of a

series of exactly m+n—1 consccutive heads is 1 jomte-1, and of m4n

consecutive heads is 1/2™1%,
Hence the required probability is

an+3 nt2 hi] 1 b1
om+2 -+ mtd ot gmtn + pmtn—1 -+ gmtn"

S
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The first n—1 terms of this expression form an arithmetico-geometric
series, the sum of which can be written down;T thus, we obtain for the
probability the value (n4-2)/27+1,

Ex. 8 {Pascal’s problem). 4 and B play a game which must be sither
lost or won. If the probability that A wins any game i¢ p, what is the
probability that A wins m games before B wins n?

Evidently, the probability that B wins any game is ¢ = l—p. Now
the required probability is that of A winning at least m games dub of
e series of m~+n—1, that ig, by Bernoulli’z Theorem, A\

mA=l(, pmin-l it a-)() pibn2g ) \' N
+m+n—102pm+n—sg2+__'+m+n—19m3‘3mgw1.

Ex. 9. A bag contains m white and n black ballyIf the balls are
drawn out one by one, find the probability of drav::igig'\ﬁrst & white and
then a black, and so on, alternately, until all the balls remaining are of
the same colour. \

If m balls are drawn out at once, what is bﬁe probability that these
are white f '\ “

Ex. 10, Four cards are drawn from ghpack of 52; find the probability
that they are all of different suits, {a) whon each card is returned to the
pack after the draw, (b} when it is~ﬁ§;¢.

Ex. 11. Given » independent. é}?ent-s A Agyeesy A, whose respective
probabilities are p,, Pg,..., P, Prove that the probability that at least
one of the events happens s 3 p;— ¥ pyp3+ I 91829 -+

Ex. 12. “{jﬁh\\tm]xmaﬁ@yq&té;mpreviuus example, show that the
probability that the events 4,, 4,...., 4,, and no more, happen is
P1Pg «ue pr{I_Pr-g—l}(]- r+2)"-{1_Pﬂ}' Hence find

(i) the probability that r {(and no more) of the events happen;

(ii) the probability that » at least of the events happen.

Ex. 13. Qat’of a family of n offspring consisting of two equally
probable tyHes, r at loast of one type are just as likely to oecur as not:
find thg'walte of

The'gumber r is detormined by the equation

3

AN 1
\"\} ;\’ "G+ "Of+1+---+"on)§5 = %,
or 1+ﬂ+n(n271)+m+n{n—1)..;{'71—-9'-{—1] — e

If n is even, there is no solution; but if n is odd, say 2m--1, then
r=m+l,

t Bee Chrystal, dlgebra, ch. xx, 13.



CHAFTER VI
EXTENSION TO CONTINUOUS DISTRIBUTIONS

Definition

Ler PP, PB,.., B, F,.., P, F, represent a series of n
straight lines (or ‘elements’) to which the same measures of
length & have been attached. Suppose that they are joined end(\
to cnd and that they are divided, for our purpose, into two
clagses: the first class L is to consist of those elements\l"in
number, lying to the left of B, and the second class I?‘pf‘ those

a
<

PO Pz FL ’\ {’.
R =P,

PL =1 ::\\ /

7

¥ia. 4. N

S J

lying to the right. Then the proba,bility that one of the set of
clements shall be a member of Z\s {/n. We may arrive at this
result in & different mannex;\,lggg;iﬁg}ggmgaqay@ﬁ éﬁghe probability
that a point selected anywhere in one of the elements, otherwise
unspecified, shall lie m.mé{e class L; since such a point must lie
in one of the e]en:ter{sl{i the required probability is I/n.

L ()18 length of subclass L
: E 7 nd length of class L+R
This is trpq';ﬁi matter how many members the class and the
subclassmiay contain, and however the successive clements are
orientated with respect to one another.
S Now let us suppose that to the total length K F, a measure
@ has been attached and that to P, P, a measure b has been
attached, so that n8 = @ and I8 = b; if § is rational, then so are
@ and b, Let us proceed to the limit, making » — 0 and 3 - 0.
Tt follows that, if P, BP, is any continuous curve such that
a, b are the measures adopted for the arc-lengths K, F, and
P,P, then the probability that a peint known to lie on the
arc P, P, shall lie on the arc P, B is b/a. The probability that it
shall lie on the arc B F, is 1--(b/a).
If b and @ are incommensurable (e.g. if @ = ~2, b = v2) it

Now
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might appear that by no process of subdivision, in which each
element has a rational measure, could an are £, 5 be obtained
as the limit of a number of elementary straight lines. But, in
fact, we may replace P by any rational point P of section in
the element 7,_, F, since, on our definition of probability, it is
immaterial where F, lies in that element; and as the number n
of subdivisions tends to infinity, the distance PF, can be made
to differ from zero by any assigned positive quantity. Thusthe
original proposition ean be applied to irrational lengths of\arc

Analytically, if ¥ = f(x} is the equation to a curve pdssing
through the points P, F, (having abscissae x = gy, #;) and if

Y "'\'(’
P/
dbraulibragy ors.i
O RTEATIATTS lau'ljl“ ‘lyOT‘g m x
My o\ Ny N. M;
\\" Fic. 5

¢, . are inteérnal points of the range (with abscissae
x = by, b,), th&n ‘the probability that a point known to lie on
the arc P ,&sha]l also lie on the arc @, @, is

§ f'ds ji N 4f (@)Y da

5 S b- -

. ) B - 2
Q) fd,a j\/{1+f ()2} dz
where s is the arc-length of the curve measured from some fixed
point.

If My N N; M, are the feet of the ordinates at the four points,
as shown, then the probability that a point known to lie in the
range M; M, shall also lie in the range N, N, is N, N,/ M, M,

Ex.. 1. As an illustration of the above results, consider a semieircle
of radius 7, bounded by a dismeter M, M,. First lot us find the expecta-
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tion of the height of the ordinate PN drawn from a point P known to
Lie on the arc M, M, but otherwise unspecified. If C is the centre of
the scmieirele and the angle PCN is 8, then the probability that P lies
on an elemoental are of measure rdf is rd@/wr, by definition. And sinee
PN = rsinf, the expected height of the ordinate is

n d T
J.fsinﬁﬂ= T [ sinf dff —= —21.
Tr T T
]

M
1 C N \ \
FiG. 6. ,:’,'\ g

Now let us find the expeected hoight of; shie’ ordinate PN erected at

& point N known to lie in M, M, but otherwise unspocified. TON==,
then PN = /(2 —2?), and the expect¢dilieight of the ordinate is

L[4 RIFN
dr  JUOp .
I TR 2 -
J“\'l (r?—z )2._,.“7 W] \.fti’.fnralﬁiiaggrfo%‘ﬁrfn
-r AAE
Note the difference bet%c‘n ‘hese two results: to what is it due?

Ex. 2. A line P@Q 45 bisected at K. Two points &, 7' are known to
lic on PQ. Find thelprobability that (1) they are on opposite sides of
B, (2) they are ophghie' same side of R, (3) they are both to the right of E.
Applications &9 W eighted Probabilities

QuestiQi)s of geometrical probability arise in which, as in the
examp]gz previously considered (p. 61), some bias has to be

”Qlldﬁed for; thus, in the above formulation of__gur definition,

Jch us suppose quite generally that the element P, P, is ‘weighted’
with a number p,, that the element B £, is weighted with p,,...,
and that P, P is weightcd with p. Then the probability that
an clement of the class shall belong to L is now

[ o i) [,
S0 BB I pPak
=1 =1

Similarly, in the case of the continuous curve Fo Py, if a point
P, whose position on the arc F, P, is defined by a measure § of
arc-length, is weighted by an amount p(s), where pls} is some
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function of s, then the probability that P shall lie on the are

_R)R. is P B
J.p(s) d’s/f p(s) ds.
b3 B

Euxtension to Two Dimensions

Suppose that a plane is divided into rectangles by lines drawn
parallel to the coordinate axes Ox, Oy. Consider a polygon
ABCDEF bounded by sides of these reetangles, to cabh of
which a measure « of area has been attached, and suppaegs that
it contains e of these rectangles. Let PQRST be a polygon
lying within ABCDEF and hounded by sides, ‘Q:‘l:"t-he same

y ~\°

\ ¥ Fra, 1.

rectanglgg,lbf which it containg b, suppose. ®hen if a rectangle
is kmown-to be one of the class a, the probability that it shall
alsg be one of the subclass b is

' N b __ba  area of polygon PQRST

/7N _

") @ ax  area of polygon ABCDEF’
We may now pass, by a discussion analogous to the preceding,
to the following

TarporeM. If 8 is @ simple closed curve, of area a, containing
a ssmple closed curve 8’ of area b, then the probability that a point
lying in the region enclosed by S shall also lie in the region
enclosed by 8 is bja.

For the procedure by which this result is established we may
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refer the reader to the usual method of obtaining the formula
for the area enclosed by a curve. By subdividing the area &
into a meshwork of elementary rectangles we thus obtain for
the required probability the formula

Lj dxdy/jsj dudy,

in which the integrals are taken up to the boundaries S and §".
y

0 N
‘E’G;*&f%b raulibrary.org.in
Tf the problem is one af\weighted probability, we suppose
that to a point with ¢ érdinates (z,y) situated within S, the
weight attached is som}} unction f(z, ) of its coordinates. Then
the probability regutived is

»\\Lj‘f (@, y) dedy / 'U flw, y) dady.

Discrgte)’zm Continuous Entities
) Talustrate the passage from a problem in probability deal-
g with diserete entities to one concerning a continuous medium,
consider the following:

A population consists of elements forming two subclasses b
and » in the proportion of 1:7—1. The number of elements
in any sample of magnitude 7' is ». From this population is -
drawn a sample of total magnitude ¢; we require to find the prob-
ability that in this sample there is no member of the gubclass b.

If wo assume that n#/T is an integer, it follows that the
number of elements in the sample of magnitude ¢ is n¢/T. And
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since the proportion of b to the whole population is 1: 7, the
probability that an element in a sample of magnitude T
belongs to b iz 1/z; thus the probability that it does not belong
to bis 1—1/n. If we now consider the sample £, containing nif T
elements, the prohability that none of them belongs to & is

il
(1—-1)(1—-1) (Ivl) t0 gt factors = (1-—1) ,
n % n T n
"\
—n{-4T}
n) AN

- \S ©
If n is sufficiently large, T ( l—i) is approximately e, where

T
) !

1 A
e= 1+-l_|+-21_1+... = 271828, %

Hence the required probabhility is approXimately e~47,

If the ariginal population be consi@e%d as a continuous one,
e.g. a volume of water or an inter#41)6f time or space, then the
number % of elements in the satmple may be made arbitrarily
Targe, and whatever the value of ¢ /T, provided it is rational, we
can always assume that /g is arbitrarily large and integral.
Thus, we cmaﬁmmhg&gleﬁgmg:

THEOREM. If in_dny continuously varying process (varying
e.g. with respect fodune, space, or volume) a certuin characteristic
i8 present {o thesextent of one in T units, then the probability that
the characterisieetloes not occur in @ sample of t units is e7,

Ex. I, Ltiig;hcnown that 100 litres of water have been poliuted with

100 bacterig? If 1 c.e. of water is drawn off, what is the prohability
that thésample is not poliuted ?
5
Sl‘ﬁce 100 Ditres = 105 ¢.c., it follows that T — ;—-36 = 10-L Alsa
.5 "1; 50 that the required probabiiity is
A\ ¢™1% = 0-000045, approximately.

Ex. 2. An aircraft company carries on the average P passengers
M miles for every passenger killed. What is the probability of a pas-
senger completing a journey of m miles in safety 7

The fatal accidents oceur once in PM passenger miles. Hengo the
probability that an accident should not occur in m given passenger
miles is approximately e~mMP,

» —n
t For example, it » := 000, the error in replacing (] —1) by e doss not
n

affect the second decimal place.,



A
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Ex. 3. Estirnate from this result an apparently reasonable premium
to pay in order that, should a passengor be killed on such a flight, his
heir should receive £10,000,

Ex. 4. If during the weck-end road trafiic 10€¢ cars per hour pass
along a certain road, each taking ) minute to cover it, find the prob-
ability that at any given instant no car will be on this road.

Evidently no car must have entered the road during the previous
minute. But on the average a car enters every 2800 — 36 sec.

Thus the Tequired probability is e789% = e~5l3,

Ex. 5. In a completed baok of 540 pages 624 typographical errors
occur, What is the probability that 4 specimen pages selected fox
advertisement are free from errors? N\ -

Ex. 6. A serics of cars of the same length and with the same ‘speed
proceed along a certain road, one every T seconds; and anather sevies
of cars identical in length and speed with the first, proceed dlohg a road
meeting the first road at right angles, one car passing eye}y'T’ seconds.
If » car takes t seconds to pass an observer, find the\pfobability that
there should be no collisiens in an interval of tirgeN,’

By ‘colligion’ we mean it this case the situg{ian of some portions of
two cars, at the cross-roads, st the same ingéant.

The required probability is evidently thesum of the following separate
probabilities: ~N '

{1} the probahility that no car onwthe first road is passing the cross-
roads in the intervael ¢, and thats & dar on the second road is passing
the cross-roads in that intervg¥ Wdbraulibrary.org.in

{2) the probability that no\ear on the second road is passing in the
interval and that a car, om'jéhe first road Is passing;

(3} the probability t‘h@\ no ear passes the cross-roads on either road
during the interval.

Hence the probability is

e‘“f."'(l _e_t_'“u\l*:e_qu( - e—t{r]_l_e—!,'!'e—-t]f’ — —ifr_{_e-ﬂr'_,e!t!.}ﬂllri"':_

Ex. 7. 0riticize the following staternents:

(n Tb&eun rises once per day; hence the probability that it will not
rise to-gorrow is el
. {2) The prebability that it will rise at least once is F—et

Phe ‘Random Walk’ Problem

We begin with the simple case in one dimension. An indi-
vidual is constrained to move backwards and forwards in a
straight line, each step being of length [, it being at each stage
equally probable that the step will be taken forward or back-
ward. We inquire what is the probability that after » steps his
displacement will lie between @ and a--da, where » is large.

Le$ @ = mi; then clearly we have to calculate the probability

P that out of n steps }{(n-+m) will be forward and 3{n—m)
1260
@
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backward. The probability of each step being %, by Bernoulli’s

Theorem
%l 1

[3(n+m)]I[E(n—m)]! 2n’
— (E)%e—m'fzn,

i

by applying Stirling’s approximation for large values of n.
Thus the probability that the displacement will lie betwéen

nd i is £

& an a“l"’f 1 I 1 . e_agmnrg da. ) 2 \”.\

A (2wnl?) O
The mean square distance o is then given by¥ N

1 CQ

2 - 2p—atEnl Jo saplt
o V’(2mlg)_.£ a’e a. =
or ¢ = Ivn, and the required probabilityig-
1 \ e

Y88y
0'.\/(277) D
We pass now to the two-dipig;ﬁsional case.
A man walks a distancet@0, — I, from a point O in any
dbrati bt gk . L
direction and 1 eﬁenrf%uasﬁgﬁgyd?s%alnce 0, 0, = I, in any direction;
required the probabilify: ‘that the final point O, falls within
distances r; and . ({f.O, where 7, > 7.

Draw a circle Qf%}adius I, about O, cutting the circles of radii
7y and r, about, @ at. P and Q. 0, may fall anywhere on the
circle with pehﬁre Oy, and it will satisfy the required conditions
if it faﬂs'Q{k}}ie are P¢. Hence the required probability is

x}= PQ L POQ
3 \Y 71'32 T
4 0\' 3 o
\m‘; W = l[cc:»?s—l H+l—r} —cos-1 lf—f—l%—r?]
- 1ba 21,1,
Ex. 1. f l, =1, = I, the probability thet the final position lies
between a distance » and #-dr from O is
2 dr
@ (48 %)
Ex. 2. Two points P and Q are at distance I, apart. A man walks
from @ in a straight line to o point E which is then found to be a distance

t Bee Chap. VIII.
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I, from P, What is the probability that the distance QR lies between I,
and I,?

What is the probability that QR lies between A and A-HdA?

TLLUSTRATIVE EXAMPLES

Ex. 1. Two points are selected in a line AC of length a, =o
as to Jic on opposite sides of its mid-point O.

Find the probability that the distance between them is less

than 4a. ¢
Let P and Q be the points and let OP = 2, Q0 = y. A\ ¢
‘We thus require R )
zt+y < 3a.
The conditions of the problem require further that x < 10 17'< 1a.
N
Y \/
C B \
D
\ P
&Y%

ww.dﬁraulibrm y.org.in

z,

oa N N A
oY Fia. 5.
PN\
If we represent x and y by Cartesian coordinates, it is clear
that « and 3 may lie anywhere within the square shown, while

the valits of & and y which satisfy the condition x4y < 1a lie

in t-\la:é,"shaded area.
~ . o atfa® 2
\ \Hence the required probability = %15

Ex. 2. A line of given length is divided into three parts.
Find the probability that these will form the sides of a triangle.
Let AB be the line, of length @, and let the three parts be

«, ¥, and a—{&+y).
Then we require 24y > a—(x-+y),
zto—(z+y) > ¥,
y+a—(@+y) > .
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. a a
These conditions are eguivalent to x-+y > 5 % < 2 ¥ < g, In

any case we have the condition z+y < a.

Henee, if we represent z and y by Cartesian coordinates, as
before and the lines BD, AE by z-t+y = a, z+¥y = af2, re-
spectively, the required probability is evidently '

area ACE 1
b area OBD 4’ ~
O\
7 “
c R
E 9
K7\
’...\"
o) N B

www.dbraulibrar);,&ﬁ-jﬂo
Ex, 3. Find the probability that the roots of the equation
w+2prtq =10, whtre —P<p<P and —Q<g¢<g
should be real. _ X\~
Let p and ¢ be yepresented by Cartesian coordinates, so that
they are restriéted to lie in the rectangle shown. The condition
72 2

P

Case i)
Fra. 11,
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for the reality of the roots is p?* > ¢; thus p and ¢ must be such
that the point (p, ¢} lies on the lower side of the parabola y = .
There are two cases to distinguish, according as P? < ¢ or

P

P2 Q. () If P2 < @, the shaded area = 2 jy dx +2P@Q, the
0

integral being taken along the parabola.

Case (i ‘t %
Fre. 12, .

3 R
Thus the area is E—F 2P@,and the required probability is

way?.dbraulibrary.org.in

therefore ~
aps 1 Pe
(?.3???@)/ Pe=5t%g

O Q
(ii) If P* > @, th®shaded area = 4PQ—2 [ = dy

AKX o
AY; i
»\~\ = 4PQ'—‘iQ—s
O 3
and j:h'k}probability is
=\ i
(tPQ—1QY/PQ = 1~

~\ 3P
A Ex. 4. If two points P, @ are taken in a c¢ircle, what is the
probability that the circle with centre P and radius P will
lie inside the original circle ?
Let the radius of the original circle be o (Fig. 13); then the
probability that P lies in an annulus of breadth dx at a distance
2 from the centre Qi8¢ .2 924z

nat | a®
The second circle will lie inside the first if PQ < PN, where



~O J' J‘ duyde c B
QO ar
where the double integral is E
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PN =a—z. Thus @ may lie anywhere within a circle with
centre P and radius @—z. Hence the required probability is

a @€

3

f 71'(&_—-251_7)'_ w = % J. {a?x—2ax+-2%) dx
e a

b

2[a4 2q+ a4]_1

a2 3 T4 8
"\
H LN
RSN
7"\ “
3 \'
\L . '\\
¢
' N
4 ;. x
N O
¥ra. 13. « \/ Fia, 14.

- Ex. 5. Buffon’s problemy A smooth table is ruled with
parallel lmes at distance @ n:part A needle of length | < a is
dropped ont Y ¥Be 4B é'bWﬂa&‘ §'the probability that it will cross
one of the lines?

Take one of the parallel lines for x-axis and any perpendicular
to it for y-axisy¥Hig. 14). The probability that the centre of the
needle hag AR ordinate lying between the limits ¢ and y+dy is
dyfa; and the probability that the inclination of the needle to Oy

shouk{‘b\e between § and 84df is —'—9 . Hence the prebability

thaﬂb‘ 1}18 needle will cross Ox is

taken over the range of values
of y and 6 for which the needle
will cross Ox. The possible values
of y are evidently given by
byi << Hcosf; and ¢ lies in the
range —iw < 8 < §w. Thus, from Fig. 15, where DEA is
the curve y = }cos® and AB is of length 3a, the required

D o A
Fia. 15.
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probability is area ARD 1 21
area ABCD  lanr  am

Ex. 8. Consider the same problem in the case where I > a.

Ex. 7. A point P is chosen on a line A B of length 2a. What is the
probability that AP . PR should exceed Ag?, where A is & given positive
number

Ex. 8. A point is chosen on each of twa adjacent sides of n square.
Show that the average area of the triangle formed by the sides of the ,
square and the line joining the two points is one-eighth of the arce ofi

theo square. M
Ex. 9. Three points are chosen on the cireumference of a circle,- Q’\That
is the probability that they lie on the same semicirele? ™

S,

Ex. 10. Find the probability that the equation ~
x4l = (2p4-1)pxr+2ng, .~.\\
where % is a positive integer and 0 < p KBV —Q ¢ <G,

should have three of its roots real. . \\
‘.\"
D C/ DAY, efc
N
w wa dbralibr .org.in
Y 1< o
K6
N
¢ ¥
O N
B

AL A
.\ »  Casei) Casa i)
" .f Fic. 16. Fra. 117

F\B

-~ By plotting the curves y = z™+, y = (2n+1}pr+-2ng, it is

\eaaﬂy geen that the condition for reality of the roots is p**+! == ¢,

We now represent p and ¢ by Cartesian coordinates (2,y),

whence, as in Ex. 3, it follows from the diagrams shown
area OEF

that th ired ility is ——— "=, Th
at the required probability i 8 —BCD" us two cases

arise. In Case (i), the area

P oany1
om:zjxsn dz =
g
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so that the probability is

Intl
In P 2n
dn+1 @

Q@ gn
In Case (i), the arca OEF = 2PQ—2 j g2l dy
0

2ent 1) )

= 2 . ‘. 2'n.+1,
PQ dn-1-1 £\
n
N 2r+1 @+ L)\
and the probahility is therefore 1 — il P -
Ex. 11. Find the probability that the solutiogs,}gf“t-he simui-

taneous differential equations D ’

dx dy "‘\

a_t"'f_ bz + E = ?: \

\J

dy
2a—blw+= b0,

where 0 << a < A, 0 << b < B, ;'ép’résent decaying oscillations,
Eliminating y from the equations, we obtain for z the equation

d%x oS3 d
www.db@glfbrg(%@wg)ng-f—bi’x = 0.

For a decaying oscillation we requite ¢ > 2b and (26—a)? < b2
This latter conditin 'is equivalent to (36—a)(b—a) < 0, so
that either . B\
(i) 3b% a,b>a, or (i) 3b>a b<a.

o M <N

:"\".

D L

AN
NN ”..’

\‘:

™

o A
Fio. 18

If we represent @ and & by Cartesian coordinates {x,y), their
total field of variation is the rectangle bounded by the axes and
# =4, y= B. For the conditions of the problem « and b
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must be represented by values of (z, y} which lie between
y =0 and y =}z (the Iine ON), and also bebween y = 1z
and y = » (the lines OL, OM); it is clear that the condition {i)
cannot be fulfilled. If, for example, we suppose that B > 24,
4

128

Ex. 12. What is the probability that the second figure in a
table of square roots of x is m, if = ranges from 0 to 1 and iy
tabulated at equal intervals? .

Let the first figure for any « be ; then for success we }'g:\clﬁife

Omn < Vr < Om{nd-1) A
1 -
or m—t—% < M0 < m-{—ﬁ'i{—) O

the required probability is evidently 1(142—34%/AB =

where m may be 0, 1,..., &
Thus out of the total range of z within };ﬁk{iﬁh it falls, viz., 0-1,
the second figure in vz will be »if x fallsjnany one of the intervals

1 w132 PALEEE NG|
A eI AV A2 T (20m 20t 1),
100[(’“ ’ 10) (m—}_l(})‘ 10,600 20 2
corresponding to m = 0, 1,008

Hence the required probabilitiy-islibrary org.in

1 m_——-‘!)
— NN (20m+2n4-1).
{ 10,0001“2_4:0

Thus for n = 0,(R = 0-0091 and for n = 9, P = 0-109.

Ex. 13. What is the probability that when log,z is tabulated
for « = 1\£b~:r — 0, at cqual intervals of z, the second figure in
the t@k{e.wi]l be 27

*

RN Ny EXAMPLES ON CHAPTER VI
'"\: Ex. 1. A defective messuring instrument slips one scale division each
N time it s used. Find the probability that after being used 100 times it
will be no more than 6 divisions from the zero reading.

Ex. 2. Trains lcave & station at 3, 5, 8, 10, 13,... minutes past the
hour. Find the probability that a passenger arriving ot the stalion has
to wait less than a minute for a train,

Ex. 3. A point P is chogen on a line AB. What is the probability
that AP: PB > A1

Ex. 4. Two points are taken in a eircle. Find the probability that
the perpendicular from the centro on the line joining them does not
pass between them.
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Ex.5. On a chess-board, the squares of which are of side a, there is
thrown a coin of diameter &, so as to He entirely on the board, which
includes a border of width ¢. Find the probability that it will lie
entirely on cne square (@ > b > ¢}.

Ex. 6. A floor is paved with tiles, each tile being & parallelogram
such that the distances hetween pairs of opposite sides are @ and b
respectively, the length of the diagonal heing I. A stick of length e falls
on the floor parallel to this diagonal. Show that the probability that

it will lie entirely on one tile is (1—%) . ~
If a cirele of diameter & is thrown on the floor, show that thé\prob.
d d AN\
ability that it will lie on one tile is (1_5)(1_5)' \‘

Ex. 7. A sheet of perforated zine in the form of a square 22 om. in
width iz covered with ten rows and ten colummns o\f holes each 1 em,
in drameter, the centres in the rows and the columngbeing evenly spaced
at intervals of 2 cm.

‘What is the probability that a particle of saftd{considered as a point)
blown against the zine shect will pess thrqt{fgh to the other side?

What is the probability that a smallNghot of diameter § cm. fired
against the zine without sufficient forcatd penetrate the metal will pass
through one of the holes ?

Ex. 8. A disk of wood of radiug B and thickness 4 is cut so that it
finally consists of four blades ar ée’ctors, each of 30°, radiating from the
centre and WoEnid MUY FROUGiR is then set spinning with angular
velocity w about an axigk‘hrough the centre at right angles to the disk;
a shot iz fired with welocity V parallel to and at distance r < R from
the axis. Fimnd the p}c{MBiliby that the shot will pass without damaging
the blades of the disk.

Ex, 9. A point P lies inside a circle of diameter AB. What is the
probability £ )

(1) thats> LAPB >« > m,

(2) thatdr > LPAB > a >0,

Where*m\is a given angle?
KEX*10. Three chords are drawn through the same point of a circle.

N s :
«W}mt is the probability that all three lines cut the same semicirele?

/ Ex. 11. A particle oscillates harmonically with period T between two
points 4 and B distant 2z apart. What is the probability that during
a small interval of time ¢ the particle will be found within & smafl
distance & of the point Bf

Ex. 12. A raindrop falls steadily down s window-pane of total height
H. At every distance & & grease spot deflects it by an amount d to the
right or loft. What is the probability that by the time it reaches the
bottom it will have been deflected from its original direction of descent
by an amount D?
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CHAPTER VII
THE THEORY OF ARRANGEMENTS (2)

In the following theorems we are dealing with a series of pro-
blems thaf can perhaps be described best in this way. Let there
be a row of pigeon-holes into which it is proposed to place a set
of objects which may or may not differ from one another, The/
result of the distribution may be fhat some pigeon-holes con?
tain objects and some do not. Thus the number of wa,jf&\n
which a distribution can be effected will depend upon two
factors: N

{1} Whether the order of the pigeon- holes e(ven ineluding

blanks, is taken into account.
{2) Whether the order of the objects w:tlQn the pigeon-holes
is taken into aceount. RS

The set of objecta in a pigeon-holexwill be called a group or a
parcel according as the order of the objects is or is not taken into
consideration, Unless otherwiseé: stated, it is to be assumed
throughout that the order of the pigeon-holes is significant.

Suppose that we are gﬁ&ﬂ"ﬁbﬁ%ﬁbﬁj’m in a row and
that these are divided b§"v*~1 partitions into groups which may
range in size from O fe.n. In how many ways can this division
be accomplished € ﬁogcther, counting objects and partitions,
we have n--r—Jdentities, and if these are permuted among them-
selves we shalhobfain the required number N of distributions,
provided y@re\ﬁlake allowance for the fact that the inferchange
of two partitions does not alter the result. Thus we have to
perni{:.te n+r—1 objects among themselves, +—1I of them being
alike; 5o that, by the theorem (p. 42),

) = {(ntr—1Jr—1) = r{r+1)...(r+n—1).
Hence

TaroreM I. The number of ways in which n different objects
can be arranged in r or fewer groups is r{r+1}...(r+nrn—1).

Ex. 1. Bhow that there are 6§ ways of displaying 3 flags on 2 masts,
when all the flags must be displayed but both masts need not be used.

Ex. 2. Show by means of Stirling’s theorem that when n is large
compared with 7, the value of N in Theororn I is /(27 in™ten/(r— 1)1,
approximately,
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Now let us impose the restriction that each of the » groups
must contain at least one object. To find the number of ways in
which the distribution can be made, we begin by selecting r of
the » objects and placing one in each of the r compartments;
since the objects are all different, this selection ean be made in
2P ways, For each such arrangement the problem now resolves
itself into the preceding, for there remain n—s objects to he
distributed into » or less groups., Hence the total number X of

ways is given by O\
N = 2B rr ). rdn—r—1) = n!n—1)/{n—rlr=1),
Th'lls, .*:.'. .

Turorem 11. The number of ways on which ndifferent objects
can be arranged in exactly r groups 48 nl(RXEIN/(n—r)l(r—1)
We note that when n = r, this reducgs o n!, as expected.

Ex. 1. A builder has been asked to doli{éy\lb different consignments
of materials on 4 successive days, at cettain specified times. If he omits
to record the details of the order in whigh the materials should be sent,
what is the probability that he executes the order correctly ?

Ex. 2. Applying Stirling’s theé’rjom to the result of Theorem II when
n i large compared with r, shew that the approximate value of N is

www,dbraulj]%rmfﬁi%_n“rﬂ 13!
as in Theorem I, Ex. 2\

Ex. 3. By estimaping the approximations in Theorems I and II to
a higher degree. o euracy, determine the proportion of the totsl
number of ways which arise from the assumption that fewor than r
groups mey he\erﬁployed.

The lagt\proposition can easily be generalized. If we wish to
arrangé # different objects into r groups so that each group
copi;é.hs at least s objects, we begin by selecting rs objects and
placing s in each of the » groups. Since this selection can be

made in *F,, ways, we have the result:

TaroreM L. The number of ways in which n different objects
can be arranged in r groups, each of which contains at least s
objects, is "F r(r+1)...(r4-n—rs—1),

Now suppose that the n objects which we wish to arrange in
r different groups are identical. This means, of course, that we
are now dealing with parcels instead of groups. We begin by
placing the objects in a row—there will then be n—1 gaps
between them. If we indicate r—1 of these gaps we shall have
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separated the objects into parcels, each parcel confaining at
least one object. Thus the number of ways of forming such
parcels is the number of ways of indicating r—1 gaps among
the n—1, i.e. #-tC._;, Hence,

TreoreM IV. The number of ways in which n identical objects
can be arranged inr different parcelsis N = (n—1)1/(r— W(n—rH
Note that, by the methodt of Theorem XII, this number can
be obtained as the coefficient of 27" in ’

@al . tay = (e 1=y,
ie. in {L—z)~. Thus the coefficient is "~C,_;, as beforg: -

Ex. 1. Dwing & period of shortage, n tons of coal have to e dis-
tributed ameng r factories. What is the probability that a'spcci.ﬂed
factory is supplied with exactly m tons? L& 7

By Theorem 1V, the total number of ways in whithithe n tons can
be supplied is - (r— 1) {(n—r7}!. \

If m tons are given to the specified factory, Wts}have n—m tons left
to distributo among the remaining r— 1 factories, and this distribution
can be effected in (n—-m—1}/{r— 2)!(n——:m;-’r+1)! ways. Hence the
(r—Din—rin—r1)...(n—r—m+ 2) .

(n = H—2).. (n—m) - Thus, if
a =10, ¥ = 4, m = 3, the probability is 5/28.

Ez. 2. If n is large compared tﬁm,@bpmmglty%pgﬂper of arrange-
menis chtained in Theorem IVis approximately »™1{{r— 1)L

Ex. 3. Prove that the valie of » for which & is greatest is the smallest
integer not less than < ™

From the last theorem we can find the number of arrange-
ments into r orJéss parcels. For the number of such arrange-
ments is theyndmber of ways in which n-4-r—1 objects can be
distributédyinto » parcels, each containing ab least one, whence

TrEOREM V. The number of ways in which n identical objects
C}tﬁ:ﬁé arranged in r or fewer parcels is (n-tr— 1) (r—1)inl

\“Cororrany. The number of ways in whick n identical objects
can be arranged in r parcels, none of which contains less than
g objects, 18 »=ra+-1C ;.

For we place ¢ objects in each of the 7 parcels, leaving n—rg

objects o be arranged in r or less parcels.

Ex. 1. n nuts are thrown daily into a cage containing r squirrels. If
& squirrel to survive must have a ration of m nuts at least per day, and
if in the struggle some get more than their share and others less, find
the probability that e certain squirrel will purvive.
¥ See p. 98.

required probability is
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Ex. 2. Suppose that n = 5, = 2, g = 1, and let the five objects e .
dencted by letters @. Then the number of arrangements is evidently
a, as; af, a?; al, a?; at, o, i.e. four.

Given n different objects we inquire in how many ways they
can be distributed into r or less groups not necessarily using all
the » objeets.

Suppose we select & of the objects—such a selection can be
made in "C, ways—and then distribute these objects amgng
themselves, as in Theorem I. In this way we obta.m
20 r{r+1)..{r++x—1) distributions; and since « may varv
from 0 to n, the required number of ways is W M

ki3

2 ! ANz —1)]
¥ =3t ttra-1) = > D ("‘{J;f 1):}
Eel) \J

_ > (r+z—1! RN
(r—1! & alin—a)! \\

Now let us form the product of the ‘tWO series
e = 1+x+2,+ + +

www.dbraulibrary 8
(1—x)y ™ = +m’¥}-m¢F1) 2., wherez < 1,

The coefficient of &’\‘\m thls product is
B 1 f(r—f— 1)
n‘+(n 1)%1! (n—2) 2! Tt

O
~C 1 [{r—1) 7! (r1)!
§ _(?'—1)![ n! +11(n—1)'!+21(n—2)1+'"]‘

québmpaﬂng this expression with the above value of N we
~“abtain the theorem:

\ )

TurorREM VI. The number of ways in which n differcnt objects
can be distributed into r or fewer groups, not necessarily using
all the n objects, is the coefficient of x® in the expansion of
nle®(1—x)—*,

Ex. Thus, if n = 2, r = 2, the number of arrangements is the coeffi-
cient of z? in 26%(1—x)2, i.e. in

21+ fat+ . )14 24 3wt 0).
Hence the required number is 11. As a verification we find that the

r(r+1)...(r+n—1)

n!
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pumber of arrangements of two objects e and h is given by the
scheme:
a, 0; b,0; ab, O0; ba, 0; a,b;

0,a; 0,b; 0,ab; 0,ba; b a.
To these must b added the arrangement (&, 0) in which neither object
is chosen. Thus the total is 11, as before.

TarorEM VII. The number of ways in which n different objects
can be arranged in exactly r groups, not necessarily using oll the /
objects, is the coefficient of x™ in the expansion of n!e*(1—x) L

For we place one of the objects in each of the r groups, and)
we have then to distribute the n—r remaining ohjects infor or
fewer groups, as in the last theorem. Hence also, gvhen the
arder of the groups among themselves is disregarded;

TurorEM VIII. The number of ways in which n different
objects can be arranged in r indifferent groups, not necessarily
using all the objects, i the coefficient of BRan the expansion of
?—?'—lez(l—x)—". o\
rl o\

Suppose that we form n sets Sfletters from the set ay, @,
Ag,..., &; suppose that the lette;i:’a; oceurs in n, of the sets, that
a, ocours in 7, of the sets whildkhanyrabenf sets containing
a, and a, 13 5y, "

Then the numbel‘\c‘{f'ﬁets containing a, only is n,—n,,; the
number containing, @; only is 7,—ny,. Hence the number of
sets contalning(d gither @, or a, only is n,+ny—2n,, and the
number cor}tgipjng at least one of a,, a, is

N

O tatne— 2Mqgt+1ye = Byt Pane
1t folléws that the number of sets free from 4, and a, is
O ) R (A1) 7
) Tet us consider now three letters a,, @,, 25; suppose that z, of

the sets contain g, that n,, contain a@,, a,, that ny contain
@, @y, While 7,55 contain a,, ¢,, a5

From the preceding result it follows that the number of sets
containing at least one of @,, @ is ny--7g-~7y,; and the number
containing at least one of @, ay, @, a5 I8 My —ny. Hence
the number of sets containing at least one of a,, @y, @3 18

7y + (g 1015 —%gq)— (Myg+ 29— Tyge)
= fy+ngitg— (MyptTgs T 1)+ Maos:
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Reasoning inductively in this manner we obtain the following
general result:t

TaeoreM IX. If n sels of letters formed from a, ay, a,,... are
such that the letter a; occurs in n; seis, the lefters ay, a; ocour tnn,
sels, the letters a,, a;, Gy, ocowr i nyy, sefs, and so on, then the number
of sets free from ay, Gs,..., @, 18
L T r
n— .Zln":+ 2 Mi— 5;: Nijgt o Mg N\
i= 1.4,

i,f=1

CoroLraARY 1. If none of the sefs is free from ay, a,,..4 ) hen
NS “
n— 3wt 3 ty— D Myt = 0‘
CorOLLARY 2. By similar reasoning it may be,fsh’éWn that the
number of sets containing one only of the lettersay! as, ay... 15
2 ??,,L—2 z ?’LU—E—S z ?’tw»k— .--:-
If ny=myg=..=DN, say, and Qs g = ... = N, and
£0 on, the number of sets free from yheé specified letters is
N—rR¥, +"'("2_, Ux, —-f}(f'—“l;,("" ) Nyt ..+N,
where » is the umlbber of lejﬁtgii’*s in question, and N = n.

www. dbraulibrary erg.in
Ex. 1. If the n given sofg arc a;, d,, B, @y @y, G Gy, &) By, Gy Gy &y Ty

G130, ;0,0 @034, @nd the r specified letters are a,,ay,@, the
n=11,r=3 FTm =05 Xny =" ny = 1. Thus the number of
sets free from a;, @, 4 is

11—-164+7—1=2, .
as is immediately verified.
CEx. 2 "Ai;'\,"school of 1,000 children, groups were oxamined for defec-
tive tes&hz\vlsion, and hearing, and the following results tabulated:
N

P\
A\ Numbers examined for:
L Testh . 180 ; Eyes and teeth . 90 | Eyes, teeth, and hearing 40
\Eyes . 700 ;| Eves end hearing . 170
Hearing . 220 | Teeth and hearing . 80

The records of these cases were accidentally destroyed and it was not
known how many of the children had actually been examined. What
is the probability that & particular child was not examined ?
By Theorem IX, the number of children not examined is
1,600 —1,100-4 340 — 40 = 200,
Hence the required probability is 200/1,000 = 0-2.

t An equivalent theorem is given by Poincard, Caleul des Probabilités; n
particular form will be found in Whitworth, (hoice and Chance, Chap. 1L




\
7

Chap. VI THE THEORY OF ARRANGEMENTS 97
Ex. 3. A cortain factory preduces and tests 7,000 motor-cars per
year, The possible defects are catalogued as follows:
B == bodywork, C = chassis, E = engine, I = instruments.
Thus BCE denotes a case of compound defect in ‘ bodywork, chassis, and
engine’. A year’s record of defects is shown in the sccompanying table:

B =120 BC = 50 BOE = 24 BCEI =2

E =185 B =23 BEI = & ~\
I = 200 CE =35 CIE =10
Cf = 35 .\?\
EI =28 o\

Find the percemtage of cars which pass ali four tests at thég.ﬁ}xt trial,

Ex 4.¥ The number of ways in which a row of n objects can
be deranged, 8o that no object remains in ite. proper place, is the
greatest integer contained in nlfe.

For the total number of arrangemerﬁﬁ of the objects is
N =n). Of these, the number of arranigements in which at
least one object is in its proper(plice is N, = (n—1)!; the
number for which at least two objects are in their proper places
is Ny, = (n—2)!, and so on. %\

Hence, by Theorem IX% the r of arrangements free
from all $these restrictions Yl e. ]i? which 8 the objects are
deranged) is N

.\“"(n 2D gy
\ 1.1 1
N =n!(l-~—F E‘l_"'iﬁ)‘

Thig Mber is certainly an integer; the last term is 41, so
thﬁt if the series of terms in the brackets is replaced by e-T, we

2'N\\

{ Eﬁere}y add a fraction to the required number; whence the result.

Ex. 5. Two shuffied packs of 52 cards are dealt by two players, each
dealing a card simultaneously. Show that the probability that all the
82 pairs of eards so dealt will be different is approximately 1/e.

We may take one of the packs as specifying the order, which may be
one of 52! arrangernents. Then the number of ways in which the second
pack may be arranged so that no card is in its proper place is 52!/e,
approximately. Hence the required probability is 1/e, approximately.

The prohability that identical eards will be dealt on ab least ~ne
cecasion is therefore 1—(1/e).

1 This proposition is a variant of one dus to Montmort {1708},

4260 H
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Ex. 6. A man writes & number (not less than nine) of letters and
their corresponding envelopes. If the lettors are inserted in the en.
velopes irrespective of the addresses, show that the probability that al]
the letters will go wrong is approximately 1/e.

TazoreM X. The number of ways in which n different objects
can be arranged in r or fewer parcels s 1™,

For each of the objects can be assigned fto any one of the
7 parcels in  ways, and this gives #" arrangements in all. . {\

TasoREM X1, The number of ways in whick n differedt olijects
can be arranged in exacily r parcels is the coefficient 62" in the
expansion of nl{e®—1Y, ¢ ~\ '

For, by the last theorem, the number of E}Tra,ngements n
which blanks are admissible is #». The numb‘f;} of arrangements
in which one assigned blank is admissible’s {(r—1)?, and so on.
Hence, by Theorem IX, the numher’@’: rrangements in which

no blanks are admissible is N
?""'—% {r— 1)n_§_£;i (.3“;'2)“._ ek ?'('?"‘"T' 1) 2y,
t__ ]V — pre 8 ?.’.‘e(rl-l}:i‘. ‘.'"('?’— 1) r—2kr__.
Now w gw.dt}r)auﬁbr@q;:ﬁrglih_ ot ¢ v

Hence, by the expaiﬁential theorem, the coefficient of 2* in
this expansion iS\\ ™
Yy or r—ir r(r—1) (r—2)7

a1 al 21 n!

way

whence "Qhk ‘above result.

T@@i&EM XTI1. The number of ways in whick n identical objects

can-be distributed info v parcels such that no parcel contains less
..\tﬂfhm g objects or more than q+t—1, s the coefficient of x*~7
Nthe expansion of (1—af) (1—x)~".

It is clear that the required number is the coefficient of 2™ in

the produet of the r factors
I L [ R iaa) IO

that is, in 2T (14-x 4224, 1),
or in 27 (1—2)/(1—zY.
Hence the number sought is the coefficient of z* in
(1—a)(1—a)~".




Chap. VII THE THEORY OF ARRANGEMEXNTS 99

Ex. 1. A die whose faces are numbered from 1 to & 15 thrown four
times; in how many ways can the number 8 be obtained in the four
throws ?

In this case we require the coefficient of »% in the product

(wlxt b2,
i.e. the coefficient of z* in the product (L +z+z% ...+ 2%

To find this coefficient we write the latter expression as {1 —2%3 /(1 —x)!
and, suppusing that x < 1, we expand {L—x}* as a binomial series.
Thus we require the coefficient of z* in

{1—-dz®+.. )1+ 42+ 102+ 202+ 35x4 5.0,
ie. 35. R ¢ M\

Note that the total number of possible combinations of the pimbers
1 to 6, in four throws, is the sum of all the coefficients in ( x4 atd- w2t
and this is obtained by putting z = 1; the number is thexgfoze 6%,

Ex. 2. The probability that a die which is thrown {oiir times gives
a total of 8 is i—? = % = 31—6’ approximately.

1x. 3. Show that lhe probability that the m;m\bffr m. will be obtained
hy throwing a die » times is the corffleient oilc” in the cxpansion of

ar(1—28y(1—2)RK6h

Tx. 4. Given the two sets of numbers X, 2,3, 4,5; 1,3, 57,90 find
the probability that the sum of twﬂ)?mmhers selected, one from each
group, is 8. AN

The number of possible p\gj&s’.o’ umbeTs iz 5% = 25; of these the
number of pairs whose surn is % ls e en%g" BIEINE the probability
is 3/25. R

Ex. 5. Given the,threg sets of numbers 1, 2, 3, 4, 5; 1,3, 5, 7, &5
2, 4,6, 8,10, find t-}ie}r bability that the sum of three numbers selected,
one from each seti jg;hould be 16.

The numbek, of jmets whose sum is 16 is the cocfficient of z1* in the
product {xﬂ-«g’%—{-...—}—xﬁ)(x—l—x“—{—m—{—m’)(x“ F x4, +x1%), i.c. the coeffi-
cient of 2in (1 o2ty 1 b 22+ .+ 25)%, which is 12,

Hened the probability is 12/125.

E&\6, A set of 10 cards is marked with the numbers 2, 4,..., 20.
Jivhow many ways can a total of 36 be found in a hand of 4 cards?

Q!

V EXAMPLES ON CHAPTER VII

Ex. 1. Four men arrange to meet at the *White Hart’ tavern in
a certain town. It happens that there are four taverns with that namae;
show that the probability that all the men choose different taverns
is &

Ex. 2. If » people seat themselves at a round table, show that the
probability that two individuals are neighbours is 2iin—1h

Ex. 3. A pack of 52 cards is dealt cut to four players; show, by
Stirling’s Theorem, that the probability that the whole of one particular
suit is dealt to one particular player is approximately 156/104,
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Fx. 4. Show that the probability of obtaining 14 is the same with
3 dice as with 5.

Hx. 5. A dieis thrown 10 times; prove that the probability that every
face appears at least once is 38,045/139,968.

Ex. . A set of r consecutive numbers is selected from the mumberg
1, 2,..., n; if & second set of & consecutive numbers is selected, what is the
probability that it has no number in common with the first?

Ex. 7. Find the probability of throwing not more than 8 with 3 dice.

Ex. 8. Show that there is a greator probability of obtaining 44p'
single throw with 3 dice than with 2. A

Ex. 9. There are # houses in each of which the popul&tiop'rha;}vary
from 1 to n. What is the probability that the average pdpulation per
bouse is 42 4 ‘.:;

Ex. 10. Show that the most probable sum to be obtained by throwing
2n dice is Tn, and that with 2n--1 dice both A48 and Tn+4 are
equally likely. \/

Ex. 11. Find the number of positive integ'ril solutions of the cquation

abytatn = 18>
if the unknowns arc to lic between 1 and)6.

Ex. 12. Given m kinds of objects and n of cach kind, show that the
probability that m —r selected objeets will be all different is

mn+tcr;_ nm;ri;mn+rqn-

Ex. 13. If a cqin is 'tossedTZn times, prove that

(i} the p‘i‘%ﬂlﬁhﬁﬁ'fum&%é’%}ﬂbwﬁ of heads and tails obtained are
equal for the first time-a$, the 2rth throw is 220, /47(2n—1};

(ii} the probahili { thet in 2n throws the numbers of heads and tails
are never equal ig 2"@, 4%,

(iii) the probability that the numbers of heads and tails have been
equal once apc}cfnly once is R0, /47,

Ex. 14. /Bgove that the number of ways of obtaining the sum r with
n dicefg"t 0, — 0,0, 40, T,

BEx\I5. If a coin is tossed n times, show that the probability that
!:k\vt:bre' will not be @ consecutive heads is the coefficient of z* in the

Va\¥ . 2 w1
expansion of o LFEFa 4. et .
2% ]l—p—al ., —a°
Ex. £6. If m objects be distributed among & men and b women, show

that the probability that the number received by the men is odd, is
{MHb+ay—j{b—aif(b+a)™ (& > a).
Ex. 17. Among a batch of 240 eggs, 12 arc bad. The eggs are sent
in cartons of a dozen to 20 different customers. Find the probability that
(i) a particular customer will receive two or more bad 0ggs,
(.ii) two particular custorners will receive two or more bad eggs,
(iii) all the bad eggs are delivered to three customers.
Ex. 18. In a street of 100 houses 25 are known to have defective
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drains, 75 have broken windows, and 15 have both defective drains and
broken windows, Show that the probability that a given house is sound
in windows and drains is 3/20.

Ex. 19. D, and I3, are two diseascs sach that the probability of any
one infected with I, acquiring D, from an infeeted individual is p,, and
the probability of any one infected with D, sequiring D, from an
infected individual is p,. Suppose that the diseases cannot be acquired
save by mutual contagion, and that n, and n, people infected with Dy
and D, respectively come to live in a town of n inhabitants, mixing N\
freely with them. YWhat is the probability that an inhabitant will be
free from both or either of the diseases? ¢\

Ex, 20. A billposter has 100 placards to post in sets of 3 or 4;"ff the
placards eontain 10 different types of 10 each, find the probfgl?'i‘li}'j{ that

s given set of 3 will have 2 alike. A 3
vt ¥ 4
A\
Ay
AS)
b
N
' 4 :.
N\
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o\
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CHAVPTER VIII
THE EMPIRICAL THEQRY OF DISTRIBUTIONS

1. Hypothetical populations and typical constants
So far we have been concerned with probability as a mathe-
matical subject of study, the category (1) of Chapter I, In
this section we turn to the consideration of category (2), which
concerns itself in the first place with enumerating the freguency
of oceurrence of actual events in a physical prob]eﬁz\"b nee
again let us emphasize the difference between (1) and (2): in
the analysis so far developed (1) has dealt with the “enumeration
of all possible arrangements that can be conéeived to occur in
any given situation; on the other hand, (2)ig'eoncerned with the
actual events as they have occurred inncircumstances akin to
those in which the results are to be ap lied. The crucial question
which has to be faced, in the use ofnathematical probability in
the theory of statistics, is hows the mathematical theorems of
(1) can legitimately be combnied with the empirical data of (2)
to enable red&glt%(a lta?_ b(%ml%de about forthcoming events of
the type &R)/ I8

We begin with a d.lsqusswn of Histograms, a pictorial arrange-
ment of physma\\dai:a in a form suitable for mathematical
analysis.-

Let us suppose that 100 leaves are stripped from a tree and
their mea&i:\vidths measured; it is then found that these lie

N Width | No. of
A n 1‘n,ckes feaves
NN 10toll! 8

1-1 to 1-2 10
1-2to0 13 ia
1-3 to 1-4 20
14tol3 18
1-5 to 1-6 il

16 to -7 ; i
1Tt 1-8: 6
18019 3
19to 20 2

between 1 and 2 inches in the proportions shown in the table.
To represent our data graphically we set off unit length on the
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x-axis, divided into tenths, and at the mid-point of each interval
we erect an ordinate proportional to the number of leaves to
be found in that interval. By drawing a system of herizontal
and vertical lines as shown, we obtain a step-curve, called a
‘histogram’.

It is clear that, by reducing the ordinates in a certain ratio,
the histogram can immediately be converted into a mathe-
matical probability diagram; since there are 100 members of the,

population considered, the proportions belonging to the sub-
()

No. of leaves
1]
v
e
/2

Y — |

N ™R ’ ——0-—] J
Wid;b .&’\fég‘ raulibrary.org.in

S Fig. 19
\

classes (1,1:1), {2 ‘L\\l ") .. are yespectively 8/100, 10/100, ete.
These proport}pr}s represent, in the mathematical sense, the
probability df\Gecurrence of the subclasses among the popula-
tion of IU(I‘lba:ves.

Once @iore we stress the distinction between mathematical
and erﬁpmlcal probability by asking two questions:

\’(1 ) What is the mathematical probability that a leaf known
~j:o ‘be a member of this population of 100 leaves has a width
lying between 1.2 and 1-3 inches? The answer is 15/100.

(i) What is the ‘probability’ that yet another leaf known to
have been stripped from the tree containing the original 100
has & width lying between 1.2 and 1.3 inches? So far we have
attached no significance whatever to this interpretation of
prebebility. Before any step can be taken enabling us to give
4 sensible answer to this question, we require some information
concerning the nature of the larger population from which the
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population of 100 leaves. has been drawn, or—as i3 sometimes
stated—we require to know whether the latter is a ‘fair sample’
of the original population. The answer to the question, there-
fore, cannot be divorced from the assumed ecriterion of the
‘fairness’ of the sample.
Probability Curves

The simple laws of mathematical probability given in Chapter
IV can be illustrated from the above diagram. For example,
the probability that a leaf defined as a member of the pophla-
tion of 100 has a width lying between 1-1 and l-i\ﬁleﬁ‘es is
10+110%+-2—0 — sum of the probabilities that itg,,'ygi\d’oh Hes in
the ranges (1-1,1-2), (1-2,1-3), (1-3,1-4). The probability that
the width lies somewhere in the range (1,;2)Js obviously unity.
The probability that the leaf has a W'@th lying in the range
(1-1, 1-4) is the area between the prob{hﬂiﬁy diagram, the z-axis,
and tho ordinates at 1-1, 1.4, N0

Frequency and Probability Cugpes

If through 4ABC...J we di‘%i:.W' a continuous curve such that
the area yndeneaghyelomept of curve is equal to the area of
the corresponding rectangle in the histogram, the curve o
obtained is called theé\frequency curve’; if the ordinates of this
eurve be rednceddn ‘the ratio 1: 100, as in the formation of the
probability diggram, we derive a probability curve. For this
curve also w&’¢an state that the probability of a leaf having a
width lying)in the range (1-2,1-6), say, is measured by the
area ﬁde‘r the curve; that is, if ¥ = p(z) is the equation of the

curyeN he required probability is

Qe 16
O P = | plx) de.
; 12

It should be noted that we are not justified in stating
that the probability that a leaf has a width lying in the range

1-53
(1-23,1-63) isfi plx) de. It may be convenient {as we shall
-3

find) for the purpose of mathematical treatment to assume
that the probability of an individnal specimen having a width

.. b
lying in the range (a,d) is P = | p(x) dz; but we should have
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to justify such an assumption or, alternatively, to find some
measure for the extent of the error involved in making it.

Ex. 1. In the examination of 148 pods of large yellow broom, the
freguency of seeds in g pod was found to be as follows:

No.ofeeeds 01 234 5 678 91011 12 I3 14 15 16 17 18 19
No.ofpods 0012612127 71416161411 9 8 & 4 2 1

Construet the histogram and the frequency curve for this population.

Ex. 2. A second batch of such pods was measured and the frequeney
of their lengths obtained, as follows:

Length Frequency p .\:\
2.2-2.8 o N
2-8-3-4 1 Ao
3440 3 N
4-0-4-6 20-5 +52)
48-5-2 11 AN\
52-58 23-a 4
5-8--6-4 10-8 \
6470 35 (0 NG

Construct the frequency curve. ‘Y

Q"

Probability as e Continuous Funciign

If we are to justify the abeme ‘mentioned assumption that
a probablhty may be rega.-rdwid:ta sl dombipuwsgsnfunction of a
variable in experimentalpractice, we are faced with what at
first appears to be a d fitelt problem concerning the continuity
of natural phenomena, " “We have remarked that all observations
are obtained, &t some stage or other, by the use of a measuring
scale; and if\th “process of mcasurement is examined, it is
found to cqnéis’t in an attempt to make two marks on the scale
coincide #ith two marks on the object measured. But whereas
it is pd ible to make one mark on the scale coincide, to our
satlsfactmn, with a mark on the object, the other mark in
gtnera,l falls somewhere between twe adjacent marks on the
gcale. Even when the accuracy of the measurement is increased
by the use of a vernier, say, invariably the reading of the scale
division involves an estimate which is equivalent to stating that
the mark does not fall between two scale divisions, but on one or
other of them. There always exists a finite ‘jump’ corresponding
to the least interval which can be measured by means of the scale.

The same kind of restriction is implicit in any tabulated set
of numbers, such as a table of logarithms or trigonometric
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functions; in fact, by no set of numbers or measurements can we
represent fully a continuous function. Two leaves out of 5
batch of 10,000 will be classed as of equal width if with oo
measuring rod we cannot detect any difference in their widths:
nevertheless the difference, if any, between two widths, ths
might be detected by a more accurate process, may correspend
to a finite jump which we ignore in the measurement. While,
therefore, it is clear that all measurements obtained froQ
Nature must show discontinuity and all frequeney curves\egn-
structed from them ought strictly to be histograms, it ond be
unreasonable to assert that for our purpose we must tegard the
growth of leaves, say, necessarily as a discontinimus process,
An apparent discontinuity arises from hmltat,lons in our method
of measurement, but it is unnecessary to uﬁport these into our
analysis. From our standpoint the distinction between con-
tinuity and discontinuity in these cagés‘amounts to little more
than stating that we take the area-hetween the histogram and
the z-axis to be equivalent to theldréa under a continuous curve
passing through the vertices of the histogram, it being supposed
that the error so committed i vsmall. Ifit is a great convenience
for us tordeatlbritilibraunelibus curve rather than with a histo-
gram, the loss in accufdey, even if it were perceptible, would be
more than compen\sa%d for by the gain in power.
The Meaning of ‘\Populata'on’

Here thénepdpirical data have been used for constructing a
hlstogram\wluch in its continuous form represents the mathe-
matical probabﬂlty curve. In passing from the former to the
latter We are in effect constructing a hypothetical population on
th basis of the experimental sample. It iz customary to repre-

£ sent such a continuous eurve in mathematical form and then to

assume, either explicitly or implicitly, that the form se obtained
has a validity for a range of the variable much beyond that
found in the given sample. This process is tantamount to
extrapolating the population by means of a mathematical
expression.

In discussing the validity of an application of mathematieal
probability or statistical theory to scientifie experiment, there
are several questions that merit examination. Let us contrast,
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in the first instance, the conduct of a physical experiment with
the collection of botanical data, e.g. for determining the size of
leaves on a particular type of tree. In his experiment the
physicist is able to exercise a considerable degree of controt
over the situation; he can plan and lay out the environment;
he can, in general, eliminate what are called ‘systematic errors’
or even periodic fluctuations. The consequences are twofold.
In the first place he can state from the beginning that thé™
guantity he is measuring will lie within a prescribed and gem*
paratively narrow range; he will know, for example, that the
expansion of a metal rod in certain circumstances eanvict be
more than 0-5 em. or less than 0-2 cm. This he kiows on the
basis of his past experience of scientific i mquuy\ and it would
be extraordinarily rare for an experiment «te/ )be conducted
without some such preliminary knowledgeyf In the second
place, the actual experiment which he¢performs narrows this
range still further; the observatiot}s‘ébt-a-ined show that the
‘true readings’ are grouped withinva much smaller band of
values. Moreover, because of the fact that the experiment has
been carefully performed and the measurements made after a
series of delicate ad]ustmgnts, R A A perfectly well
aware that to multiply. khe number of readings merely to satisfy
the demands of the ‘sfatistician cannot possibly increase his
ACCUTACY g suecceed only in encouraging him to incor-
porate a number\of less accurate observations in his results.
When we ¢onsider the collection of botanical data the condi-
tions are séen to be very different. The botanist has to take the
material'with which Nature provides him, largely in circum-
stanéﬁs over which he has no control. His data may therefore
range over wide regions; he can, like the physicist, state in
“advance upper and lower limits within which his measurements
will lie, but the narrow band will be much less accurately de-
fined: the more observations he can collect, the greater witl be
his knowledge of the features he is studying. Whereas the
physicist can proceed on the experimental assumption that
there is a definite expansion of the rod to which his measure-
ments are approximations, the botanist cannot assert that there

£

t The far-reaching effects of any exeeption to thiz rule ean be seen from the
conssquences of the Michelson-Morley experiment.
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is a definite size of leaf, the ‘true’ size, to which his collection
approximates, One of the purposes of his experiment is in fact
to discover whether he can usefully apply such a fiction to his
subject-mattor,

In the light of the above facts concerning experimental
practice in physics, it must be admitted that in many cases
there is no justification for the assertion that the limited set of
data obtained by an experimenter are a sample of a hypothetlca.l
population or a much wider collection.t The position is diffexgnt®
when we are dealing with biological phenomena of theé\type
mentioned, for here the actual collection of data has #abe-Seen
as a step towards the building up of the hypothetlga}:’populatlon‘
with its special conception of a ‘true’ value. /This’makes the
application of statistical theory to physical ex*perlment a much
more delicate and uncertain proceduré\than to hiological,
meteorological, or economic phenomena,\

The type of collection or hypothetickl population which we
have had in mind is a static unchahging one. But such is by
no means the only possible type,\ln'the paper referred to above,
Campbell illustrates the d.lﬂiculty of assigning two different
samples "t “ciPeaihr AGBNEEtBNs by considering the rainfall
records of 1901-20. ‘Was the climate between 1901 and 191¢’,
he asks, ‘different fm;m that between 1911 and 19207 If this
problem is statis o&i}, the records for 1901-10 and for 1911-20
must be sampleg of two possibly different collections. Bub
what are the témainders of these edliections? Not the records
for other years; for, if the climate may be changing, other years
are nof ¢otrparable. But meteorological records must be records
for same defined period. If the records for 1901-10 arc a mere
saxiple of the records for some longer period, and not the whole

mcoj‘lectlon relevant to the problem, what is this longer period?’

’ The answer to these conundrums surely lies in the fact that
the climate of a country is itself a varying phenomenon and
therefore the two records for 1901-10 and 1911-20 must be
regarded as successive samples of a varying hypothetical popu-
lation. Whether these samples provide data adequate for the
drawing of valid conclusions about climatic changes as a whole
is another matter. All we wish to point out is, that unless the

1 Ci. N. Camphell, PProc. Phys. Soc, 47 (1935), 800.

£
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records in question be regarded as successive samples of a
varying population, incomsistences of the type indicated by
Campbell are bound to arise.

But we must not over-estimate the importance of such matters
in experimental practice; we shall certainly do so if we imagine
that all experiment is necessarily individual. When scientific
method demands that a particular conclusion shall be accepted
only if it is accorded general assent, this should mean not only.
that the experiment which led to it is ‘accepted’ as from orle
research worker and that it can be imagined repcated if néces-
sary, but that it is in fact repeated by a number of dther
workers. Thus, many measurements have been mdﬁ of the
velocity of light, by different obscrvers Workmg under diverse
conditions or by the same obsecrver using & variety of methods.
For the final conclusion to be acceptable,)the collection of
data has to be regarded as a ‘fair sa.mplei‘of what scientists
who perform the cxperiment are likely” to find. On the
other hand, the search for a true dciehitific entity would be
fruitless unless all the numbers thamed could be regarded as
clustering about some so-called.‘tue vaiue’. The set of observa-
tions so found thercfore emBORY- WEAHI B d&fRe conditions
of experiment which are n@ecssarily unspecifiable in defail; and
in essential contrast wgit}l the casc of the individual experi-
menter, the larger thie amount of such observations, the greater
the precision with which the true value can be stated. For
“this reason it js6F vital importance that the mass of data found
by different phscrvers should form a cohcrent collection; they
have tobe.hnified, and the unifying process which attempts to
cancel‘oﬁt the numerous irrelevant circumstances is essentially
a, {{c'a,tlstlcal one. As we have remarked, each experimenter

“will be able to state at the beginning that the quantity he pro-
fioses to measure will lie within a prescribed, comparatively
narrow range; the fact that this range is practically identical
for all the observers is merely evidence that they all begin with
the same basic knowledge of the problem. The narrower range
which emerges in cach experiment will reflect among other
things the diverse conditions of the individual experiment, and
it is these ranges that have to be dealt with in a statistical
manner. In disagreement, therefore, with the point of view
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put by Campbell,f we hold that a statistical approach to
observational data derived from different observers (or from
the same observer working under different conditions) is in-
escapable and is in fact fundamental in the development of
science itself.

Following up this idea, we shall seck to discover what are
the most suitable probability functions which can be utilized
in practical cases, as they occur. We are then justified in assgm-
ing that the probability of occurrence of a variable in the rdnge
(x, 8} is not only to be obtained by computing the arcachetween
’ohe histogram and the x-axis, for that range, but byev&luatmg

_[ ofx) de, where y = p{x) is now a contmuous curve passing

through or near the vertices of the hIStOgI‘ﬂ»mg

Typical Constanis N
For experimental purposes, and pax;tlcularly for the construc-
tion of hypothetical populationsN#pis inconvenient to handle
a mass of detailed data. It istherefore necessary to examine
whether certain characterlst].cs of the data may suffice for the
purposew%wﬁtgﬂh%yw ithe general problem as follows:
Given a set of numbers-q,, a,,..., a,, can we find a single number
which can be regarded ‘as a measure typical of the set? Thus,
ay, @s,... May be h@ fumbers obtained in measuring a desk {as
in Chapter 11), aud we may inquire, can we find a single number
which can beltegarded as typical and which can be referred to,
for our purpéses, as the length?
1f we~desire to specify the set a,, a,,... even more precisely
thanéposmbl& by using a single number, a second problem
arises, namely, how closely are the members of the set packed
-~ of distributed about the ‘typical’ member? We shall, of course,
’have to make precise the meaning of the word ‘typical’ in the
given context. That this second problem is closely connected
with the concept of frequency is seen if we state it in this wey:
How frequently do the measured members of the set fall into
the successive ranges of, say, 0-1, measured from a ‘typical’
member? These two questions require to be answered very
precisely before further steps can be taken to handle a set of

1 Loe. cit. 808,
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data adequately in terms of what may be called its typical
constants.

What characteristic shall we expect our first typical constant
to possess? If it were a large positive number, the differences
between it and the actual readings would be large also; similarly
if it were large and negative. There should be a typical constant
lying somewhere between these two extremes, such that the
sum of the differences, taken positively, has a smallest valog;
it would be a number about which the set as a whole is most
closely packed, in accordance with the requirements we have
already indicated. This suggests either that the sum of ‘the
ahsolute valnes of the differences befween it and ‘@hel, actual
readings should be a minimum, or that the sum of the even
powers of these differences should be a minifiatn. Each of
these snggestions would give us a typical constant upon which
to base our discussion. N

Let us illustrate by a problem. Consldér the set of numbers
2, 7, 8, 15, 10, 4; take any number ' and write down the
differences x—2, x—7, etc., some} of which may be positive
and some negative. The sum offhe squares of these differences

s (o— 2t (= T Y
1f we plot the values of" _}\agamst x we obtain a parabola whose
24+7- 7+ 44

N
minimum ordmate ooeurs at ¥ = = the average

of the given numbers

This minimum ordinate thus represents the least value of
the sum«of the squares of the deviations of x from the given
numberk; it is attained when z has the ‘average value’. If we
deﬁne the typical constant in this case as that value of x which
< 'rnake% the sum of the squares a minimum, then we find it by
t&klng the average of the given numbers.

The proposition is true in general. Thus, let a,, @,,..., @, be &
set of numbers, of which x is the typical value. The sum of the
squares of the deviations is

y = (=0, +Hz—a) .. (a—ay)
This attaing its minimum value when dy/dx = 0, i.e. when

(e—ay)+ (z—ay)4...+(g—a,) = 0,
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s0 that the required value of x is (2, +a@,+...+4,,) [n, the average
value., :

The minimum value divided by % is called the square of the

- standard deviation o: or if @ is the average value of ¢, ay,..., ¢,

we have
o = Jf{la—ay)*+ (@—ay)2-4...+(a—a,)?} V.

[ Note upon ‘average’ and ‘mean’ ~

If a train travelling between two stations changes itsspeed
steadily from 40 to 50 miles per hour, its average sRééd‘is 45
miles per hour. If the passengers in the train have heights
varying from 5 ft. 5 in. to 6 ft. I in., they may haVe an average
height of, say, 5 ft. 8 in. In the first case itUs legitimate to
assume that at some point in the journex the train has actually
been travelling at 45 miles per hour; in bite second it does not
follow that any one of the passenger%’hﬁs a height of 5 f1. 8in,
—if wo refer to it as a height, it isa@etitious one.

It is usual to apply the texms ‘average’ and (arithmetic)
‘mean’ indiscriminately to these two cases; but since & real dis-
tinetion exists between thém it would perhaps be worth while,
for the $ak¥ APERHPEFT 1WA that the mean speed of the train
is 45 miles per hour, s7hile the average height of the passengers
is 5 ft. 8 in, A.IQ’Bn’lber of the class would then occupy the
position of the méx , but there need be no member of the class
which possesgés ‘the ‘average’ characteristic.]

We remdrk that ¢ and a are both ‘typical’ constants, although
the formf';r\ha,s been found in the attempt to discover the latter.
Sinp\e@* is the mean value of the squares of the deviations of

- eaeh ‘member of a;; a,,.., a, from its average, ¢ (the ‘root
~JQgean square’) gives us an overall measure of the deviation of
‘the set from the average @, without reference to sign.

There are two other features of the set which are sometimes
found useful. Suppose that a frequency diagram has been con-
structed in which the ordinates represent the number of read-
ings lying in successive intervals. The interval in which the
ordinate attains its maximum clearly corresponds to the most
frequent or ‘most fashionable’ value of x among the set. This
value is called the mode; in general it is not identical with the
average or mean, but it will be if the frequency curve is sym-
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metrical about the mean value. A frequency curve may have
more than one mode; but we are here concerned only with
cases in which & single mode exists.

Aguin, we may arrange our data in ascending order of
magnitude and divide them into two sections half-way, so
that as many measurements lie above this division as below
it. This position is called the median and is such that the
probability of any member of the set lying below {or above)
it i9 3. R
Measure of the significance of o & ~

The magnitude of ¢ alone may not, of course, p;'g\?ide us
with all the information we may desire, even whem\it’is asso-
ciated with the average value a. As a next step wédn&y inguire
how many of our readings lie within the range (0, ) about a,
and how many outside; or, as we may asky'what is the proba-
bility that a member of the set deviates ffom a by more than o?

Faulibrar

'¢\;.. g a o
\V Fig. 20

The ag‘s’v\ver to this question may be found at once from a know-
ledge'of the average, the standard deviation, and a histogram
Ql? % graph of the frequency curve. In the frequency diagram
we erect ordinates at the points = @, ¥ = ao; the number
of observations which fall within the range indicated, divided
by the total number, is a measure of the probability of the sub-
class whose deviations from the average are less in absolute
value than the standard deviation. In accordance, therefore,
with our definition, this determines the probability that any
individual observation, as a member of the hypothetical popula-

tion specified by the continuous curve, has a deviation less
4260
'
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than o; if this probability is ‘high’, the set is ‘closely packed’
about the average. We note that ‘high’ is here a matter of

judgement.
If p(z) is the probability function in the given case, then the

a¢ta
required probability is evidently | p(z)de. Tt is usual to take

the origin of coordinates at = a, since many frequeney curwes,
are symmetrical about the ordinate erected there. If P(z)s the
transformed probability function, the probability is IO s

f Pz) d. ar

An alternative constant associated with tlleidjst-ribution is
suggested by the question: for what deviation ftom the average
is it equally probable that an observatiox\will fall within, as
without, the range? Analytically, we inquire for what devia-
tion Ais »

A X 3
f P(z) dz; S,
—A &3

In any given case, the valqzé;of A can be determined by actual
enumeration or, if the hyggthetical frequency curve has been
constructed;bybwmay medhodafor evaluating areas. The value of
A so defined is calledthe ‘probable error’ (a misnomer if by
that term we are’led to conceive of it as the most probahle
error). If a devi@dion from the average is indeed to be regarded
as an ‘error; &8 though the average were the ‘truth’,f then
every error has its appropriate probability. In the case where
the dewiation is 4o we take the probability to moasure the
extep,tft\o which the observations are packed about the average;
in the case where the error is A, the probability is 1.

{"\Thus we have been led to a succession of typical constants in

the attempt to specify a distribution. These are

(1) the average a;

(2) the standard deviation o about the average;

(3) the probability p that an observation has a deviation
from the average of less than the standard deviation;

(4} the probable error.

Which of the constants will suffice in any given case depends
on their magnitude, our judgement of what their magnitude
t 8ee note on ‘average’ and 'mean’, p. 112.
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implies, and the purpose for which the data are to be used. If
the standard deviation is small, then the average itself may
suffice; if the probability p is great (i.e. in the neighbourhood
of 1), then 2 and ¢ may suffice. If not, the ‘probable error’ gives
us some further indication of the extent to which the distribu-
tion curve is dispersed about the average. We shall analyse
these circumstances in greater detail when we come to study
particular forms of probability curves.

N

Definition of Weights oA\
If 2,, Zy,..., z,, are a set of observations such that x, QGG{J\I'S ™
times, z, occurs p, times, ..., and z,, p, times, thenthe total
number of observations present is &0
ot P = 2 P
The sum of the observations is N

PLET P2 Bt Py Py ‘T“‘E.ﬁx-

Thus the average & = > px/ > p. |

The numbers py, Pas--., Py, are calléththe weights of the observa-
tions @, Zy,..., &,. It is clearsfom the formula that all the
W?.ight-s may jbe multiplied, \}B\.y dEI;g:uﬁg%Py‘arb‘iiH-ary constant
without affecting the value of the average: Tat points whose
abscissae are & == ¥y, @), &, ordinates of lengths p,, p,,..., p,
are erected, the dia,gﬁsﬁx so obtained is a histogram, as we have
already scen. \J

Typical const@,ﬁg for a continuous distribution

All the gonstants so far defined are relevant to actual experi-
mentalst%a,té,. We have seen that when we proceed to replace
the Histogram by a continuous probability curve we are in
eflect postulating a hypothetical population. We proceed
pow, therefore, to the derivation of analogous constants for the
latter. Let the equation of the hypothetical probability curve
be 5 = p{x}); we now seek a typical constant @ by forming the
sum of the sgquares of the deviations of x from.this constant.
Thus, since a deviation w—a in the interval dz occurs p(x)
times, the sum of the squares of the deviations is represented by

B
I ={ (2—a)*p(x) dr, where « and B specify the range of the
probability curve. We wish to find the value of a, if any, for
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which this integral is 2 mirimum. We have

8
sz@—m%wéx

B 8 A
= j x®plx) dx —2a fxp(x) dx —f—azfp(x) da

Now I will be a maximum or minimum with respect to a/f,
dlfde = 0, that is, if .
B —— B R\,

—2 f xp(x) dz -}-ch,fp(a:) de =10, | O

a
<

8 8 s,
Thus a == f xp(x) dx/f plx) d.r,”‘:,\

giving a value for @ which obviously corrésimnds to the average
of a set of obhservations when the nurﬁber of such observations

is finite,
That the wvalue of & so found makes I a minimum follows

from the fact that ial 7. g?,é l311(:5) dz, which is necessarily posi-

tive since p(z) is everyt(here positive,
We have thus ohtaihed an extended concept of an average;
by analogy, the “standard deviation o for the hypothetical

populatmn iy deﬁned by the relation

d -—{..((’6 a)2p(:a: dx/fp(x

U x*p(x) de —2a f xp(x) dx —H;rﬁfp(a:) dx}/fp(x} dx

o [+ 4

- j 23p(z) dw/ | p) dz ~( [ ape) az f ) dx)z,

in virtue of the expression found for a.

By calculating o in any given case we can once again estimate
the probability that any number in the range (a, B) will differ
from the average by less than o.

\s

Ex. Suppose that a hypothetical population ranges in magnitude
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from 0 to 2 with a frequency which between 0 and 1 is given by
piz) = =, and between 1 and 2 by plr) = 2—a.

2 1 2
Then | aplz) dx = [atda + jx(z—x) dr = 1.
b it i
2
Also J-p{:v) dr = 1.
0
Hence the average a = 1.
The standard deviation ¢ iz given by N
9 2 A
ot == [atp(@) da | pla)dz —a® = §. Oy
h] 0 'S\
\ W
H — __,1_ 7 ‘5}
Enee o 6 ”.* 3

The probability that a member of the set between D\ahd 2 will differ
from the average by an amount 1/+8 is

) ¥

. N
T pla)da = _[ e dz + J‘Ja(z a&dx — 2“!56_1.
e 2

L 3 aad
»"

Tchebycheff’s Theorem
Let @y, @gprers @, be & Se%%%&%ﬁ?&?y dhgiy, mean 7 and

standard deviation o are theh given by

LY = _
(one = Ex,,, (1)

X = $ s ®

IfAis aﬁ)t “posmve proper fraction it follows that not more
than A%h.of the #’s can deviate by more than ofA from & For
sugge} that A%z of them deviated to this extent at least from
m\ﬁien the sum of the squares of their deviations would exceed

V " e (j) = no?,

whicli is a contradietion of (2).
It follows that whatever the nature of the distribution, the
Proportion of 2’s deviating from the mean by more than

2¢ is less than 1,

3c 3 »” %)
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These figures provide an upper limit to the probability that
a member of a set deviates from the mean by more than a given
multiple of the standard deviation. For any given distribution
this probahility is, of course, easily calculated.

2. The Gaussian Law

In discussing the specification of typical constants we pro-
ceeded from the assumption, unwarranted except for its generah,
plaugibility, that one of these constants is such that the sim
of the squares of the deviations of observations from, i’t"sﬁéuld
be a minimum. We propose in this section to carry the’probiem
of typical constants a stage further, by an elemehtﬁtry study of
a number of hypothetical populations, <

Let y = &(x) be the equation to a probabLhty curve giving the
probability of an observation of measure .’Q, we shall suppose that
all the measurements which might b ‘piade in the given case,
by a partlcular process, conform tathis law of probability. Let
Ty, Xg,..., 2, be & set of u of these ‘measurements. Suppose that
We move the origin of coordm&bes o a point on the y-axis, distant
a from the present origin, where e is to be specified; the equation
of the proBabilEy bRty SRSy y = $(£), where £ = x—a, and
the deviations of the given observations from a are

&= %‘a’: &= 23—0a, ..., £, = x,—0a.

The probabilities’ that deviations £, &,,..., £, will separately
oceur are ¢{£,)/$(£,),..., $(£,). Hence the compound probahbility
that out ofall the possible deviations that might oceur when
7 obse ,a:tlons are made, precisely this combination arises, is

the B P = $g)b(Eo)- H(E,).
We shall define the typical constant @ to be such as to make
{ips probability of precisely ¢(£,)d(£,)...h(£,) oceurring, greater
than that for any other value of the constant. + That P attains
its greatest value for some value of ¢ does not necessarily mean
that it attains a mathematical maximum, if we restrict ¢ to lie
in the range of the observations x;, Tgsuesy X,. WWe may suppose
that ¢ and ¢, 52, .» &, vary continuously over this range,
but even then P is not necessarily a continuous function of .

T This prineiple, in extended form, is applied in Chapter IX for the determi-
nation of hypothetical populations in general,
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(We have already seen that a probability curve, for a set of
given observations, is not necessarily continuous.) Accordingly
we make the following additional assumptions:

(1} P, regarded as a function of £, &,,..., £, and g, is continu-
ous and differentiable over the whole range.

{2) There is a single greatest value of P in the range which is
also a maximum of the function.

(3) The value of @ which makes P a maximum is the average ,
value already determined.

We shall have to examine whether these assumptions can\b‘e
fulfilled; certainly they impose restrictions on the natureso\f the
probability function which will be reflected in the forstr eventu-
ally found for it. Whether they are such as to make\ the results
inapplicable in practice is at the moment an opén question.

Differentiating the function I logarlthmieallv, we obtain the
first eondition for a maximum, /4 \

95 {51) dfl 96 (é‘?l)d‘i‘u: i
fe) da T gg) e W
But since £, = ay—a, £, = ¥,— Q,“’ v, £, = %, —~a, We have
d_fl dgﬁw__ ALY dhra(éfjbl._ar_y_oqg in
da o :
¢ (sl BlE), L HE) _, 5
e gey TR )
Since, by hypotheS}s @ is the average of =, %,,..., T,
O &tbtati =0 (3)

Combining &")\and (3) we have

@E} a6+ (G )t (s ) =

where Xis any constant. Since &, &,,..., £, are subject only to
He relation (3), it follows from this equatlon that

146 146 :iqs_(_g,z}

L) Gl T & dlda)

These equations are all particular cases of the equation
B e

$()
the integral of which is $(¢) = 4e¥2. Apart from the con-

Henece
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stants A and 4, this determines the general form of the
probability function which we have been led to by oy

assumptions.
- It remains to determine whether we can choose A so0 as 1o

make P a maximum and not a minimum. Since P will he g
maximum when log P is a maximum, P must satisfy the

further condition that

2
d%%(log P) < 0, for the specified value of a. ~\

Now this requires that & ‘:\
L (GENE)—H N _ o N
Z{ gn ] < 00
where $(E) = AN, $(E) = Asq“sf}),
¢"(£) = AL’ {§)+?ﬂsé(f)
Thus the condition reduces to x\ v
zxéo
rﬁl .
so that %J x?rl\BStbrau a,tl ve, We then write
sﬁ{f) Ae .

Since ¢(£) is a. prab&blhty function its total integral over the
range of variatien ol ¢ must be unity. Evidently our assump-
tions have led’ng to a function which does not vanish outside 2
finite range $or £, but which admits the possibility of observa-
tions diffgring from the average by any number, however great.
Clea%f"hhis result is a violation of the most elementary practice
in abservational work and is thus a measure of the extent to
whieh assumptions (1) and (2) lead to hypothetical populations

~ that are not consistent with practice. We shall discuss these
‘limitations later; for the moment we use the fact that the range
of the variable & must be taken as extending from — oo to
-+ w. Hence we have

fm#mwzh

from which it follows that 4 = k/vr (p. 123).
Thus (£) = (A/vm)e7¢", the Gaussian error law.
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Aliernative Derivation of the Gaussian Law

Another method of obtaining the Gaussian error law rests
on assumptions of a different character. Let us scek a proba-
pility distribution in two dimensions which is a function of
the radius veetor only; that is, if # and y are the Cartesian co-
ordinates, the required function is of the form ¢(r), where

r? = 22432

'i
T ’
\ KA
Y D < d . A\
* ’o
Y, -1 '\
‘\\ ‘_P.I" N
\\C ,-"‘ b < 8
L] - %
[y s A
\ . 2"
LY -
. N
o A B
"

Fi&r’\éfib raulibrary .org.in

Let P be a point (xzy}t distant # from the origin 0, and
gituated at the centr o'f‘a’ small square abde of side « which is
formed by drawinghparallels to the axes through the points
ABCD. Q"

The probability that a point will lie in the annulus defined
by two cireled’with centre at O and radii 7, r+dr is $(r)dr.
Thus the’%ﬁbabﬂity that a point (x,%) will lie in the interval
AB id(x); similarly, the probability that it will lie in the
inferval CD is $(y)x.

We now assume that the probability that a point will lie
inside the square abde is the compound probability arising from
these two independent events, i.e. ¢(z)d{y)o? This result must
remain unaltered if the axes 0X, OY are rotated into the
positions 0X’, OF*. If we construct a small square of side o,
&8 in the previous case, we thus obtain

d@)p(yla® == $(2’)d(y )o
If the axes OX’, OY’ are so chosen that OX’ passes through
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P(z,y), we have x" = \[(z+4?), ¥’ = 0. Thus the equation to
be satisfied by the funetion is

$(@)py) = V(@ +y*)(0).
Assuming that ¢ iz differentiable and differentiating fint
with respect to x and then with respect to ¥, we have

¢((x)¢(y) J( 3+ 2)§6{'\-!(x2+y£)}¢

¢(.’1’,’)(i}’(y) [,'(xg_l_ 2)56 {\/( 2+3l }é(o) o\ \

\.

Hence yg'(x)¢(y) = (@) ), or

S

$a)_ dw) D

(@) ydly) 2O
Since # and y are independent Varlabkzs, this equality can hold
only if both terms are constant; thl\

@ 4. N _
B AN ey T

\ x2
Hencewww dbraulibr ary. ogg?'g Iw) 5 5
or \ plxr) = CeD?,

where € and B\me arbitrary constants, We have thus deter-
mined the nagtire of the function ¢. We have still to insert the
conditionythést the total area between the probability curve and
the ax;sj&f fX is unity.
B%f"é}é' doing so let us notice one consequence of our assup
tioh ‘that the probability of a point P falling inside the squate
'.abdc is equal to $(x)p(y)o® It is clear that no probability
\"\} Hunction which was zero outside a cirele of finite radius R could
satisfy this condition, sinee there exist points lying outside
this cirele which have z- or y-coordinates of magnitude less
than E; thus we should require the product of two finite
quantitics to be zero. It follows that our assumption cannob
apply to a continuous function ¢(r) which vanishes for values
of r > R. In fact ¢(x) must be finite for all finite values of z, 88
follows also from the result

d(x) == (el
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By choosing D to be negative we can, however, make ()
decrease rapidly as » increases. We write
$(@) = Qe

where (' and A are unspecified real numbers. We now apply the
condition that the area between the probability curve and the
g-axis i8 unity; since the range of x is (o0, <o) we thus obtain

J(,ﬁ(x) dr = 1. O\
A N\
Hence @ o - D
1=¢ f e o — 90 f e g — 20 [ guig)
A} &
Y u ’:.
where we have written Ax = 2. \
1t can be shown that D
J. e dz — %m;:~
¢ ‘; \
Thus O_«E - ‘l;, C .
k " WW dbrauhﬂ'l ary.org.in
Finslly, therefore, we ha,gze\
N\
\#(x) 2 g,
Consider the e { Bt s’;smn
..\:,m ©

¢
Q

-
\N:

\%ﬁre hr = 2. Now

. —gt -
J.e—*’z%iz: Jze‘*‘z dz = [__e2 } -{—éfe—” dz=%.
1 0 o Ty

r 1
Thus J’ wip(a) de = o

— Gl

iy gy o 2 —a1y2
J.;,;e @ dx—kwwfe 2% dz,
1]

-_—0

We have seen that if we have a set of ohservations such that
Z 1s the difference of an observation from the average, and
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if () is the frequency with which = occurs in the set, then

? a2(x) dx is an approximation to o?, the square of the standard

aeviation. 1t follows that

ot = 5;5_2’ or ko= - 32 approximately.

The probability function then takes the form PN

. N2
e—z‘fﬁa’ 2\ } N

1
z) = )
é( ) 0\/(271') :;\
where o iy the standard deviation of the hypot}“qu:iégl population,

The Error Function m'\.\' k
The (Gaussian probability curve, glven by y= e*’*’i’ is

shown roughly in the accompanymg thagram

X x

AN  Fre. 22

It has a maximum at 2 == 0, of amount h/+», and points
of inflexion, found by writing d%/dz® = 0, at the points
x = 1 1/hv2. We have already shown above that 1/Av2 =d,
a quantity which, for the Gaussian law, corresponds to the
standard deviation o for a finite set of observations.

It is clear that the greater the value of %, the more closely
does the curve lie to the z-axis; thus it is suggested that the
constant % is associated with the precision of any set of data
which might conform to the Gaussian law.
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The probability that a variable will have a deviation between
LR .
z and z-+-dz is F; e~**" de; thus the probability that a deviation
A b
will lie In the range {a, b) is T f e~ dx. The probability that
ki

47
& variable will have a deviation between —1/h+v2 and 1 JhNZ,
the positions of the inflexions, ig

1 1
3 FYE] 2 V2 ’.\‘\~
p=—- [ a7 T f e dt, where f = hx. £\ °
R g ‘™ W
-1 0 ™
five "G

¢*O
Eraluation of the Error Function o)

Because of its importance for probabilities Whose frequencies
1o *
are given by the Gaussian law, the error fu'ﬁ}tion 72 J. e~ dz hag
£ A\ NTT

W ]
been studied in detail and tabulate@(see Appendix). Various
methods have been adopted for this pur ose, We notice, in the
first place, that a particular ¥l DREHEIRNREIR is known,

for jm e dz = Lm. Thus{,.a;{ in Chapter V, if we write
i )
K , 7
(Brf(z) = f e~ dx,
o e
AW 0
then HBrf(o) = 1, and Frf(0) = 0.
.“\‘.
When z t{s’mﬁll we may approximate to the value of Erf(x) as
followg'

‘&Vﬁé:'ha:ve

’”\\
\‘ H o 4 . .’,1’}4 3;'8
J.e dxmf[lax +ﬁ“§i+'"] dz
by H
a2 ab ¥
=Fgtim T rm T

Since the series is an alternating one, the sum to two successive
te%'ms gives an upper and lower Hmit to its sum. Thus, if we
teject the terms beyond 27, the result will be deficient by an
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9

amount less than Q_x_zﬂ If this is to be less than unity in the

fourth decimal place, we require

9
< 104, or z < 2.10-2, approximatcly.

9. 4!
For large values of # we proceed differently. Integrating hy
parts, we have N\
’ F1 S W PN
iR — =z ~E e — g2t _ T e
fe da J‘&xe dx 23:6 zfa:ge:'\
& z z \ o™
1 1 1B LD
=5 TER Tt ”

Continuing this process, we obtain AN
w e~z \le 3.
g Saliaele B 5
[erde =5 { 2ar2+~(2~’52 B }

@
Sinee the funetion e~#"is deﬁreasmg in the range {x, o0 ) if is clear

that the error involved m stopping at the fourth term is less

1.3.5

than ¢“¥ ‘fdijr ﬁﬂﬁo‘%lﬁaf’rﬁ&?nemca]]y, i.c. less than E'f?T
248

m

the last borm rét@iﬁéd. A similar result is obtained at any stage
of the expangion.

The Probghle Error
Wq @a‘i}te the probable error for a Gaussian distribution in
gy with that of a finite set of observations by stating that
11; 1s a deviation the probability of whose occurrence is . Thus,
- "\1f 7 18 the probable error, then
v L3

N
—-r

As in previous examples, we express this integral in terms of
Erfz. Writing & = 1/ov2, we require the value of r which
makes vz

/

2
—_ e~V dr — 1
Al f z 23

L]
where hx = z. Thus Erf(r/ov2) = 0-5.
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From the table we find that

rloN2 = 0-477,
and r = 0-67450.

As we have seen, the probable error gives the upper and lower
limits for the deviation of a variable such that the probability
of the deviation lying within those limits is equal to the proba-
bility for which it Lies outside. Or we may say: the odds in. ¢
favour of the deviation lying within the range Srarel:1, We |
may inquire what are the odds in favour of the deviation ly\iﬁg\

127

in the ranges -2, +-3r.... . ®
Thus, the probability that the deviation will li€ th the
range -+2r is
&= 2rfoae '.."\\
9 >
«%n e dz, or FErfi (2r/o-v”2\k;
0 $ 4

Since rfev2 = 0-477, the probability is Eﬁ(& 954) = 0-83, from
the tables, M
Hence the odds in favour of this rafnge are
083:1-0-83 =9 :vﬁ';éiﬁd}groxima-t-ely‘
S w . dbraulibrary brg.in
Ex. 1. Show that the agproximate odds in favour of a

deviation lying in the rangey
13 are 21 : 1
ey are 142:1;
x\\ :;41; 5r are 1,310:1;
Q" 4 6r are 18,200:1;
& \ +7r are 420,000 :1;
AN 48 are 17 108: 1;
\‘ +9r are 1081,

Ex.2. What is the probability that a deviation will lie in the
I‘Rl‘lge ig-?

H 1
The required probability is 2 exp(—a?/20%) dz = Erf —.
avr v
0
From the table, Brf (1/42) = 0-682,

Thus the odds in favour are 0-682:1—0682 = 17:8,
a‘PPTOXima-tely,
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Show that, for a range 2o, the probability is ¢-954,
+ 30, the probability is 0-997,
440, the probability is 0-99994,

Applications of the Normal Law
If the probabilities of the occurrence of x and ¥, two numbers
in the range —o0 << (,¥) < -+ are respectively

h 2,2 2
;—exp( —h2x®) and -\),—exp{ —k40, A

N

\\

x and y being chosen independently, we requu'e the probab;hty
that f(x, ) lies in the range O

’\

p < flzy) < H+5H-'"f:~
The compound probability P is c!e@y

-}b— exp(—h%?). —iei&—kz‘yz} dxdy,

integrated over the range 6f x and y specified by the above

inequality.
Consicher. disr amllili-m‘afyr&tgqn the case

,i’;\ f{x,y)*;t:%—‘;,

ie. .~\\ b < oty < ptu.
Nl gt dp—x
Then «3. = .}ﬂ” exp(—hoa?) dx f exp(—k%?) dy.
“/ — n-a
“';@ow by the miean ordinate rule for integration we may write
RO AL
y J. exp(—k2y?) dy
-z

— Hexp{—k¥pu+ dp—a)}-+ exp{—kHu—a)} 1%
= eXP{—k2(#-—x)"} Bpe.

Hence == ;i-: exp{—h2x? — k¥ p—x)%} dedp.

Now B
s B _ kzi.l k‘ak!
Bt L k) = (k%kg)(x"hwrﬁ) it
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Henee

. R ;- 2, \2
Bl ) [ ool o

e
Rk Sﬁexp(_ h2k 2)

= TR Nr Ly
— 4 2,2
or P = - duexp(—u?), A
1 1 1 A
where z" = EE—{-'FZ :’\f \.."\

Following precissly the same line of developmeni; 4t is easily
verified that if f{x,y) = ax+by then the probablllty that
ax+-by is chosen in the range (u, u-+8u) 1s s -\\

where 7E = 7% + E‘E

Onee again this is eastly generahzéd to the following proposi-
tion: g

Ifx, %y, @, be a sef of & zﬁd@@dg@&mg@gﬁ&g@mbers n the
range (c0, —c0), and if tk@robabaﬂat%eg with which %, Ty, Tg,... ATE
chosen. are \\ N

h 6 N kn hn
?.LEXP(—}]F ‘r%)«;'“‘ ;;LBXP{—‘;’% 333}: LIRS \Tﬁcxp(—hi xi}:
then the pro&&&mty that

\../ 0y Tyt Tyt G, Xy

shail l\e w the range (i, O} 48
"‘\:\' ES_. OXP(_IL’#‘Z),
N/ v

1
B k2+h2+ +

Accuracy of the Arithmetic Mean

where

Let (11:-&22 e = Gy = 1/%,
then the probability of (x,+z,+...+%,)/n lying in the range
"3 pt-op) s 33;.1,

o exp(—IZu?),

K

280
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1 1Fr 1 1
where = =$[E§+E+...+k—§].
If all the quantities %, have equal values, then
1 w1 1 .
A== O I = hvn.
Accordingly the required probability is
h—v,‘{i?'exp( nh2u?) dp. O
The fact that all the quantities &, are equal 1mpﬁés*\ha,t al
the measures ,,..., %, are equally precise, i.e. they éach belang
to groups having the same standard dewatmn N
1 .m’\‘
m. 3
Now from the composite law of errbp’of the arithmetic mean,
P = anl e,

and therefore the standard devm{uon for the arithmetic mean
g = 4 ‘l i o
www.dbr aullbral o oré"{g k"](zﬂ) T

Thus the BCOUT ALY o the arithmetic mean of n observations is ¥
times that of o gingle observation of the system, if all are equally
good and if the deviations of the observations and of the means
satisfy the Qowtssian law.

Ex. Conder the probability that (z?-4-y?) lies between p and p-+d

when #'and y are selected in the range (— oo, oo) according to the Gaussian
Ia.w;\ ith equal precision econstants. Here

P = ff — exp{—Ai(x?+y*)} dxdy,

J —

\ ) the integral extending over the region defined by

8 2 zyk
Thus pdu = (@@ Hyht =

B 2 o+ du
P== fd& f rexp(—A2r?) dr = [—exp(—ht?))iT™
] B
== oxp(—R*u?)—exp{—h¥{u +81)%) = 2A% Su exp{—hi?).
Hencs, also, the probability of /(x?4-y?) lying between p, and pi, 8

Hy
| expl—h2u®) 284 du = exp(—h3ud)— exp(—houd).
1)

W
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The Bandom Walk

On p. 81 we dealt with the problem of the Random Walk in
two dimensions where the length of each walk was specified
but the direction undetermined, all directions having an equal
probability. We turn now to an examination of the comple-
mentary problem, in which the directions are specified but the
distances traversed in each direction are undetermined except
that they are each drawn, as it were, from stocks distributed
about the mean, according to the Gaussian law. We colfs)'der,
therefore, the simple case of two component translatiot# and ¥
at right angles, N

An individual walks a distance x from a point Oy then turning
at right angles walks a distance y. If the prob'a;bility that = lies

between z and z-4-8z is -{a—exp(—kzxz)\am and that y lies
Ve D

between y and y+3y is Qk—exp(—‘k%}) 8y, 1t is required to
m L )

determine the probability that fthe“individual is finally to be

found at & distance between grand u-t-8p from O.

8ince = and y are not selectéc.l'wit-h eﬂua.l reciston, buf according to

the laws (kfvarjexp{—h%?) gnd (Y icb;!}“};ytﬁﬁﬁ' in
o e ‘\ -+ By -z}
P= % f Gdp(= k) d x exp(— ky?) dy.
BN St —zt}
The limits of infegration are determined from the fact that
o\ o< @) < g,
ie. ,\\”\ . Jipt—a?) < o < (B —-a7).
Ry Vl{p+8p)—at] = (P~ + 20 5 +807)
'S 3
. = ‘V{(p*-—x’)[l-{-;;___i, —}—]
3
= (p?—2") + ﬁ

on retaining terms of the first order in 3.

Thus the integral on the right, becomes, since the two limits are close
together,

8
[oxp{ (3~ )+ exp{— o — e Mg b

= @%exp{*k‘(p’—xs)}—
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Accordingly, n (I .
_ phk —pagny 2R p— ")
P = - S j exp({—hixt) — o=

i

Let = psing; then

41
P = ”@& f exp{— (A*sin®0 - k¥eos? )] db
o

-1

T
2 4 o n o
. ‘“Mﬂexp( [l )Sp. J. exp(p.zk —k 50529) .\ \
™ E 2 N o
— 4w 28 N\
Now if A2 == Lpui(k®—A?), then e N

T
j exp(—Acos 20)df =

—n

exp{ —Acosd) dé, wh‘ere qS = 28,
&

T

i

B

1— Aca‘sq&-‘\é‘;cos’qﬁ— ) dp

f
|

(
( —i~— 03295—]——-—cob4¢+ )

S J
5 O8N
')(* 1 A 1A ]
www. dbraulibr ar;y or Li-r 22 | (212 2* + {31) 27 e
(i) = w2 K
Thus, finally. sm\e.;.e is regarded as positive,

P = 2uhk expl— b3 +HENpB [/ (B2 — K2){V2) 8.
We note thab 1{; % — k, then A = 0, and
§ 3 P — 2uk? exp(—ptht) S

\ .
I‘hlvgmblem finds an interesting application in the determination
of piism‘ﬁent periodicilies in ohservations. (See J. Bartels, Terrestril

M@gnetzsm, ete., vol. 40, no. 1, 1935.)
'®) Fix. 1. Particles are distributed in a plane X,Y in such 2
“manner that their z- and y-coordinates belong to Gaussian sets
of standard deviation o.

Show that the probability that the distance from 0 of any
one of them lies (@) between 0 and o is (ve—1)/ve, (b) between
o and Bo is e—F12—e-%2, where o << 3.

Ex. 2. If in the foregoing example the ‘probable distance )4
from O be defined as that for which it is equally probable that
the particle will lie within it as without, show that

Rt = o®log, 4

{,;
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Show further that the region of greatest density of particles is
in the neighbourhood of r = o.

The Gaussian Law and Experiment

At this stage it is worth while reviewing again the position of
the Gausstan law with regard to experimental observation.
The law has been derived by us on assumptions which cannot
be held to apply rigorously in practice (p. 120); moreover, likes
the Bernoulli law, the Gaussian law indicates what frequency
curve will be found on these assumptions when all possible
arrangements of the clements considered have been ircluded.
Now it is always possible to assume that any frequeney curve
obtained in practice represents a sample of a supefpopulation;
it can be regarded as a selected and not an exhaustive collection
of the possible arrangements. This has to be’borne in mind if
we are not to apply the Gaussian law u.gmﬁtica,lly. But there
is another and, in & sense, more fundamyental objection: it may
not be true—and there is no reason t6 suppose it even approxi-
mately true—that all the arrangements of data which might be
chosen from the population nedessarily show that the hypo-
thetical population conform&tg‘a\mig%im.gjﬁa@mion.

When a set of data doe& wot so conform, one is tempted to
assert that this circumst’aﬁce arises from the fact that the data
represent only a samples but it may be that the original popula-
tion is woi Ciausgiany. The position is clearly seen from the
investigation oiwp./156; it is there shown that if a population has
its frequenofeékpressible as a function #(2) of a variable ¢
Tepreserttit g"éome characteristic, and if in sampling the popula-
tion’aj'}'%hat is presumed to be a value ¢, we draw in sets of
datalin the neighbourhood of ¢, with a probability of choice

{"#ie) at 14w, then the final sampling distribution is given by

ult) = [ v(t+a)ple) dx,

the infegral extending over the range of the sampling. It is
clear that the form of a sample depends on the conjunction of
the distribution in the population and the law of choice over the
range specified. As we shall prove, when the population and
the law of choice are Gaussian, so is the sample; but if either the
bopulation or the law of choice be not Gaussian, the sample
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is not Gaussian. It follows that to apply conclusions drawn
from a Gaussian distribution to the interpretation of any group
of samples may involve us in serious error,

Here again we must not attempt to escape from this impasse
by asserting that, in the last resort, the (zanssian law gives an
idealized distribution by which to interpret any given set of
data. There is no escaping the plain issue that every such
interpretation must stand side by side with the assumption that
the original population is Ganssian, A\
The Significance of Deviations O

In connexion with the above remarks we' ‘ﬁia,y congider
generally the problem of significance as it, Arfses in statistical
theory. Broadly speaking, we may say that the significance
of & statistical constant is usually estimated by comparing it
with the corresponding constant whiéh would be found under
so-called ‘conditions of randonimess’; that is, by calculating
the probability that a constant“of this magnitude would be
found under conditions in which all possible arrangements eould
occur., Thus, let us suppose that certain data are presumed
to be médsareNTeHb artleiBut under the same physical condi-
tiong on the same.Object, and that the deviations from the
average have beetfound and the standard deviation o calu-
lated for thesg«iﬁervations. So far we have made no assump-
tion regardifif the nature of any distribution law to which the
measuremients are presumed to conform. Now suppose that one
of them\in particular appears to differ very considerably from
the others, showing a deviation 4o, say—the deviation having
been found by including this observation. A good experimenter

(ay justifiably have his suspicions aroused as to the accuracy

of the observation: how is he to decide whether it should be
included or not? If he is a sensible experimenter he wiil know
whether any suspicion ariging in the course of his work attaches
itself to this particular observation—mno statistician could
possibly tell him that—and in so far as he rclegates his judge-
ment on this matter to the statistician he is surrendering his
function as an experimenter. All that the statistician can tel
him is how far the set of measurements are consistent with
some assumed law of distribution, for there is no meaning in
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the bald statement, ‘the numbers are consistent among them-
selves’. Thus, what the statistician does iz to seek the proba-
bility that & deviation from the average as large as 4o will be
found from the same number of data drawn ‘at random’ from an
original population, the structure of which he proceeds to specify,

The experimenter has no such knowledge of this structure:
one of the purposes of his experiment is to find it. As we have
geen, the odds against a deviation of 4o, on the Gaussian law)\
are about 10%: 6 or 10%: 1, approximately. And if the expen-
menter is overwhelmed by this fact he accepts without furbher
question the significance of the odds. Thus, the mgmﬁoance of
the observation is referred by this process to the sighificance of
a probability arising from an assumed population @nd, accord-
ingly, the experimenter may decide to reject bhis’ observation.
The statistician does not in faet do precigély this; he states
that when the odds are, say, 25:1 ag@inst, he will advise
rejection. The justification of this judaement is stated to be
based on experience; but if it is, it cant only be the experience
of the experimenter reinterpreted by the statistician.

3, Other forms of hypothéticahmemyationsg.in
In general we may say that when from a set of'data, restricted
in extent, & frequency, @ probability curve is constructed and
its equation expressed' by a mathematical formula, we have
thereby invented.a.hypothetical population of which our data
may be regarded“as samples. There is clearly a considerable
latitude in gpéclfymg this formula; the mathematician knows
thas thﬁ{qgh a finite number of points will pass an infinity of
curvgs,'so that other conditions describing the nature of the
) foriithla to be used must be given before we can assert that the
"Bl result represents the hypothetical population which satisfies
our requirements. This problem of constructing the hypo-
thetical population is simply a restatement of the above-
mentioned problem of determining the original population when
the data and the method by which they were selected are
known; if, of course, no method of selection is specified, then
all sorts of formulae can be found. A given type of formula for
the populstion implies some kind of selective process, even if
it s not explicitly stated.
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Tn the notation of the previous section, the sample u{t) of a
population v(f) defined in the range (—oo, o) is given by the
equation @

ult) = f v{t+2)pla) dr. (1

—

Now assume that () can be expanded in a Taylor series
2
w(t4-x) = v(t)+xv'(f) +% 2B+ i Q)

1f we introduce the constants} sy, #ig..., M, deﬁp\e&d}y the
relations e

%
S
o

~ 1 f "N
My = f xpl{x) dz, g = — J. xﬁ%{% de, .,

1 /N

| =

m, =

-5

TN
. b
,:[xg@&% o

N/

we may write (1) in the form 1 '

u(t) = v{t)foy v’ () Fmy V() 4. (4)
That is;\abhﬁﬂtsamgialga&:g)m expressed in terms of the proba-
bility function for the‘hypothetical population, its derivatives,
and the moment{ goefficients of the probability function of
selection. Y \

We observe.that if the function p(z) is a symmetrical (i.6. an
even) function, then the coefficient m, is zero for all odd values
of r. lg;}ﬁis case the sample u(?) will be expressible in terms of
w(t),‘{ui}d its even derivatives.

SEx. If plr) = Vie—’m’, show that
} ™
1
e = gepa"er=2 T (gp ey
It is a simple matter to invert equation (4), supposing that
the operation of inversion is permissible. For we have, by suc-
cessive approximation,
o(t) = wlt)—m v (i) —m, 0" (1) +...,
or  wlt) = w(t)—myw ()~ myfu ) —my O} O

1 These are numerieal multiples of the ‘moments’ of p(x} as usually
Jdefined.
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This formula expresses v(f) in terms of the simple function
u({f) and its successive derivatives.

. ke
Ex. Show that, if p(z) = ——e¢h%",
~NT

1 1
v{t) = u(f) — T O+ i U

If the hypothetical population is itself Gaussian, i.e. if »(¢) is
of the form ::T e~ then irrespective of the method of selectlon
A
it follows from the foregoing that we should be able to exﬁ&nd
a. given gample function in & series of terms eons;shng of
numerical multiples of ¢~#'** and its successive derwhtlves We
may invert this process; in fact formula (1) S}NWS that if a
sample of & continuous variable is assumed to\beaussian, then
the hypothetical population can be expressed as a series of
linear combinations of e~#** and its derngaﬂuves In both cases
the coefficients in the expansion are definite numerical multiples
of the moment coefficients of the probablhty distribution used
in the process of selecting the ,sample from the hypothetical
population. It remains, therefore, to examine the procedure
to be followed in order b0 ezpan B gﬂf\l;%lrf $iffidtion in the
manner deseribed, m\

The Hermite Polynmr}a}ls

Consider the fugetion ¥ = e~¥' (in which, for simplicity, we
have written "S1/v2 and omitted the factor 1//(2m)). The
first derwah@%f y with regard to x is

.:\ dy _

Q) P
_~ fhe second derivative is
d2y do e —fit.
E;Eﬁz"a;(xe B = (a2 —1)e
and in general the nth derivative is
dhy o nin—1})
dwr ={=1) { 2 g Ot
+n(n~1J(E‘F_M... 3) ﬂ~4—...}e“*”'- (6)
2.4
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The expression
n(n—1) _, o nln—1)n—2)(n—3) .,
Ty Tt 2.4 T
which occurs in (6) is called the Hermite polynomizl of order

n, and is denoted by H,(x). It is easily shown that H (x)
satisfies the differential equation

agy ¢
PHG) o) | nhy @) = o, o)

dxz
and the recurrence relation \ ) '

H, . (x)—zH,(@)+nH, ,{x} = 0 8)
For since y = e, A

d ."’.\\’
&Y e o = —xy: ¢

dx
Differentiating this result # times .. “(e}mve

drily | Ay dt Ty
d$“+1+ +nd$ﬂ 1 0,

. . dr AN . .
which, gince, @ﬁﬁﬁréﬁr?&gﬁh(xw’ ig equivalent to (8}.

We have also

N\
Tt
}%TEJr jw,,f{ﬂ %Y~
or fH (=hy}+r o {H @)y}+ (n+ DH, 2y = 0
He§@
W), | MR W g )T g )y

dx?
oH, (@) d—i o+ (n+ D H, )y =0

If we insert the values of dy/dr and d2y/dz® and divide by ¥, this
becomes
dr

da?

dH (a:)

+ @ —)H ()22

—xtH DH -
which reduces to (7). o n(x)-i-('n—f- VH (x)
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By means of (8) we can compute H,(z) for successive values
of n, since Hyfx) and H,(z} are both known.
It follows from the expression for d™y/dz" that the curves
d’xﬂr (e"i‘-’-—"‘)
are all symmetrical, while the curves
241

d
iz N
¥ dpir+l (e * )
. 2 & “\’
are skew (see Figs. 23, 24), '“.\.\\““,
% \/
| N
4 "\.
\ :\\
~ N x
O yezee® 2
~Nx\
Fig: ‘23

~ W’ww dbraulibrary.org.in
It is clear that y = z et c% reprosent a probability curve, since

J' e{‘\” = [~ = 1.

The mode or maximumzva.lue of i oceurs when o = 1 and-is thus ¢4,

..\
o\.o 3
O
Q
s"\‘.’zv
& -
\/ \/ o \/—
y=-2c? :1:3&
Fia. 24

The importance of the Hermite polynomials, from our point .
of view, lies in the fact that any given frequency function f(z)
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which satisfies certain very general conditionst may be ex-
panded in a series of the form
@) = agei='foy e W H @) ay e FH @) (g
where a,, @,,... are constants,
To obtain the coefficient a,, multiply both sides of this
identity by H,(x). Integrating, we have
=] P «© O\
f f@)H, (2 dz = 3 a f e Hyx)H, (2) dz. N
— i=0 — o "\,,\'
Now oY
fe—ix’H_m(x) 2fZ) da = [(—1)n m(q;)d = f\g"iﬁ' ]_w_

— 0

b -1
— = 1)°\Efm(x iy,

— \\

A\ WY

- f e—iw‘H (x}Hn {2) dz,

-—

on integration by parts,

in ﬁrtﬁ@“bfdﬁi‘é@éﬂﬁtﬁﬂﬂmtgﬁhe integrated part vanishes at both
limits, ProceedJng t@us, we obtain, if n > m,

f euwamh\m (o) dr = f b g (@) fe) B (1)

Now, J’ii?};: m, we have
\;:\." HP(x)=n! and Hyx)= L.

Thus the integral reduces to n! f et dy = nl\f{2n).
oY
7 If, instead, n > m, mtegratlon of (11) gives us

[ B @) de = [ o B @H, (o) . 1
But since H, () is a polynomial of degree m, H{ " {z) s 2er0;
thus the left-hand side of (12) is also zero.

Returning now to {10), we see that if i = n, the coefficient

t It i= sufficient that f(z), f'{z} and f*(:) should be finite and continuous in
{—, o) and that fix) and its derivatives ghould vanish at & = £ . '



Chep.VIIL§3 HYPOTHETICAL POPULATIONS 141

of a; vanishes, by {12}, while if { = =, it is equal to n! /(2x),
Hence we obtain from (10),

ff (@)H,(x) dx = a, n!.J(2n),

giving @ = m-l(z—#) f f@)H, () de. N
It will be observed that the method of determining a, follows
closely that of obtaining the coefficients in a Fourier expaﬁéion.

Thus, when the sample is expressed as a-series of deritatives
of ¢#, the hypothetical population will itself be'expressible
in this form. The cases we have dealt with above ‘dre the com-
paratively simple ones in which one functionNer the other is
(raussian, N

Stendurd Deviation for Bernoullian Pop»aé!diions
In this case the standard deviation o from the average iy

given by (p. 62) Ny
= 30 g rnp—ry el
r=0 A

A~ ’www.dbl'aulibral'y.org_in
= nzpz E nq_prqn:,%znp z nqprgn—r,r_jr_ Z "O;._-pfg"'"?'z.
£ )
XA 1)
: \ . (
From the identiy > .
&t = 2 "Coprg T,
we find ag O 63 that
§‘ np(p+gy-t = ¥ *CLpgr, (2)
gl‘«!ng" np :-z ﬂ.C‘r pfgn-r?-_
e :]?ifferent-iating {2) with respect to p,
Mpt g b n(n—)p(p+a)** = 3 "Cop'igrrE (3)
Hene, substituting from (2) and (3) in (1) we obtain
o' = wlpt— 2w mp+n(n—1)p* = np(l—p) = npg. (4)
1 we use this value of o to specify a Gaussian population,
o e
1

then e 1 _ _
ov2  J2np(1—p)}

{p. 72).
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Bernoulli’s Limit Theorem
We have seen that the mean value of the deviation [r—np)is
equal to (npq); since this expression tends to infinity with »,

" it follows that when the number of trials is increased indefinitely,

the probability of obtaining @ dewiation whick is less than any
assigned number lends to zero.

r N
E:_p 18
N

equal to rq , and that this expression tends to zerg'ag n tends
K s N

At the same time we observe that the mean value of

to infinity. We thus obtain the following fundﬁfri‘ental resulf:
TuporEM. When the number n of trials is incrensed indefinitely,

the probability that

r . .
—— I . L '
~ _fp‘ will rem’cxt{w\a«}ess han any gssigned

number approaches unity. e

This theorem is due to Bernoulli, but it should be noted thet
the information it provides fallg¥far short of what we should havo
liked to obtain. All we can infer is that the probability of obtain-

is less than any given

ing at anostdi-giNaayderiation ;a —p
small number, pmﬁ&ed that n is sufficiently large—an assertion
which differs essentially from the ‘first empirical assumption’
quoted on ps 29, from which the conception of probability has

been removed.
¢ '\ N

Poi.sj{é%’bistributions
«Bernoulli’s ‘formula states that the probability of exactly

/¥ successes in #n trials is

=" r:pr(l___}g)n«—r,
where p is the probability of an individual event. In this
formula write p = e/n, so that ¢ = np Is, as we have seel,

approximately the most probable number of successes.
Then

-l
_ nrn— 1)..;(!?1,—-1'—{— 1)(5),.(1"%)1‘/(1_;2)?
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___ir(l e)“’n{n i).. {n—~r—}~1)( )

7l n

g L e E e V(B

We shall now suppose that the events under consideration
are 1ate, that is, p is small compared with unity. Hence, in
order that the most probable number of successes may he
appreciable, = must be large, since p = ¢/n. In these elrcum-

"
O\
stances 1—;3’ = ¢~%, approximately. 8 \/

Now the product (1 — 1) (1 —_ %) . ( I— i%}) hes betwaen

1)
unity and 1— rir—1)
Zn

, and thus tends to unity if r()— 1) is smail

compared with 2z, which will be the case l_f (%/,21@ is small, since
#fn 18 still smaller. "
Alo (1—_) = (1— f)"’ﬁ - gerin :I, &pproximately, ifnis
n ’:n
large compared with 7. \
It follows that, provided ?'Z/Zn s small compared with unity
and p is small, the value of B.is aﬁjﬁfﬁﬂﬁfi’éfé&l{gﬁ@‘"é’%ﬂ In other
words, if we select from &Lhrge population in which the proba-
bility p of success is am{II ‘then the probability of r successes in n

trials is given by B3 emcfr!l = e~ (np)/r!

peovided that rE/Q?a in small.
This result‘igknown as Poisson’s law of distribution, appli-
cable to ﬂsecase of rare events.

Sfan&wd Deviation for Poisson’s Law

\ sThe Peisson Law does not represent a true probability dis-
ribution, since the sum

- € B Y e S f_‘

‘ (1+_ﬁ+‘2_1++a) = ye={) ?‘!

18 not équal 4o unity, If, however, n is large, z e—, is approxi-
=0

stely equal to z ;, by which it may be replaced.

T
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To this degree of approximation the average value ¢ of r is

oSSy

r=>0

Thus the approximate value of the standard deviafion o is

'3
- 2 S (r—e)2 n
£ ?" e) , 2\

given by

a?

l

o ofme {er 25 1),+Z(Hq}

= e—¢fe®ec— 2%+ (e} e2)ec}
= e, ...,j\g'

Henece o = +e.

\Y; @
Ex. 1. 8how that the error mvolvcd m\w\rltmg Z — far Z i
N/ r=0
than {
el p)
J{%n(w 0y
Ex. SowThabfaltmhions B §’ The telophione service in operation

presents an cnorraous<namber of practical problems in probability.
These are, hOWPVBI‘,in\C%b&III) 20 technical that a simple case only 35
given in Illu&trﬂ.t:‘x i, “Suppose that there are n available lines and thal, ‘
on the average, of these are in operation at any given momens. Using
FPoisson’s laW we find that the probability that at any time exactly r |
lines are i reque»,t 18 .
£ Pl fef}(/ri |
NQ( Lf the average time of duration of a call is T, the probahility
that &' call on any particular line will begin in a time df of this interval
..{S A/ T. Hence, the probability that a call will begin in an interval &
#s\.en any of the € lines which are, on the average, in operation is edt/T.
\ Tt follows that the probability that in the interval df exactly » Iines
are in use and an additional line is reqguired is
e’ edt
-~ Ti . _‘j."'_ .
Clearly, if # = n, the additional line will not he available and the cal
will be fost. Thus the probability of a call being lost on this occasion

«©

edi - €

1’
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Sinee the probubility of a call arriving in the interval d¢ is edt{ T, wo
canclude that the probable proportion of lost calls is

~31
=
T
Ex 3. From a given population of N numbers z,, x,,..., Tp, a sample
of magnitude » is selected. Denoting its mean by M,, show that the
mean of ]l the 3¢, such means m., ix equal to the mean M of the original
population, \

Ex. 4. Prove that the standard deviation o, of the m,’s is glwen by
a? = ¥ (M—m, N0,

O
_N Y, 2N PN 3
ANT P ANEN 1) T AN
bEx. 3. Deduce that the standard deviation o of tlae\x & 1a given by
¥-1
L ”i\l_n)cr,"f, go that, for large values of I\,\fn is approximately

syual toa/vi. (Cf. the result on p. 138, on an %t:}ely different asswonp-
on.)

Ex. b Given n readings m,, @y,..., 23, W 1th1 mvan 1, we call the quanti-
ties 1, = m- -#; the respective reszdual&., Suppomng that M s the true
vahie Df mior aﬂ possible readings, “ﬂvail the guantities e = M- 2; the

n—1 € €,
eorsesponding errors. bc;tabh“h’fht‘\g?}]dlg';‘l‘%uﬁlfbl Arprgin g T T n
Assuming now that the ¢ 's/ard normally distributed, with precision
comtant A, deduce from ﬁh:éf yesult of p. 129 that the precision constant

E for the v's is given by G = and hence that the standard

¢ nht
deviation for the, @15 {3 ¢3/(n— 1)}.
¢ \ ~
\ W

N

4069



CHAPTER IX

THE USE OF PROBABILITY IN SCIENTIFIC
INDUCTION

1. The general problem

ALT scientific conclusions are arrived at by a combination of
inductive and deductive processes. The experimenter provides,
the data, the mathematician accepts them and offers a hype:
thesis which links them together, and then by mathemtmallv
deductive reasoning draws certain conclusions from thégt. From
the peint of view of mathematical technique & dedpction has
been made; from that of scientific method, in ghating a hypo-
thesis which cutruns the experimental data alohe, an induction
is involved. The mathematician has deduved certain conse-
quences, and, offering them to the experimenter as possible
truths, demands their physical vemf%a,tlon or disproof. The
-experimenter deduces by his parh.cular method that they are
true in his particular circumstapees; and together they pass to
the inductive stage that thechypothesis outstripping even thess
new facts 1s sﬁﬁi %ﬁmk ?ilyt%ég's%r?se that it is a vahdggmde $o the

next step.

Thus we dlscover.three elements in any scientific problem:

(1} A sef of d&ta, given as the result of experiment: we refer
to thess ag the “sample’.

(2) A w@er field (‘the populatlon } of possible data from
which (V)\has been selected.t

(3)A hypothesis or hypothetical law tentatively presumed
togovern the structure of (2).
N\ (Stated in this way, the problem appears in a form defached
fl‘om the experimental methods which are necessary to collect
the data and from the use fto which (3) is to be put. For
example, on account of the imperfections of their apparatus
the experimenters may incorporate in a reading at time i,
say, readings over a time {-#. Or the data may be such as
to require classification as of length I when in fact the actual

t ‘In this connexion see the limitations of this principle in many cases of
physical seience (Ch. VIII).
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lengths vary about ! It follows that there is apparently a
fourth factor in the situation which requires to be considered
if (1), {2), and (8) are to appear as steps in the scientific pro-
cess, namely,

(4) The process of selecting or ‘sampling’ the data.

The way in which these four elements are associated can
be shown in mathematical form. Let us imagine an original
population to consist entirely of elements having a common™.
characteristic measured by the variable ¢; and suppose thab
this characteristic occurs at values i, £,,... with frcqugiibi%s
Fit), ¥(f),..., where for the moment ¢, ¢,,... are integers” The
totel size of the population is thus N

VR (TANRNES (R MR
Ina problem of seientific induction we do naebknow the form
of Fit); we can only speculate on it by meﬁms of (1) and (3).
Suppose, however, that a set of data T(f) has been collected,
wrering the whole range of ¢: thus, U{,)"is the frequency with
which the data are collected at whatthe experimenter believes
tobe the value £,. We have used.bhe word “believes’ designedly
beciuse what the experimenter @Goes-idbpeukbivesiste iswecp into
his reading at, say, ¢, a numder of readings at £,+1, t;4-2, etc.;
this inclusion of false daté 4% not within his control, for he acts
on the assumption tha.N}enis obtaining correct data at the given
value of £, O
We shall suppbgethat the false data are swept into the true
readings accordiniy to some particular law; thus, let the un-
known lsw\which describes the proportions of readings at
nighbafichy positions included in the reading at ¢ be p(s),
¥hete\s s the interval between the readings at ¢ and i+s.
St Vit4-s) is the number of readings which occur at H-t_?,
e muber of these which are accepted as being at f is
Vi<sipl),
W follows that the frequeney U(f) of the samples found at ¢
i the sum of all terms of the type V{i-+s)p(s), where s takes all
possible values about the position ¢. It is clear that a good
“perimenter will have so designed his experiment that very
f‘;“‘: and small, values of s occur; mathematically this implies
Sy that p(s) 1s always zero beyond a particular range of 5.
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With this understanding we can write

U= 3 Vietape) y

Ex. I. Suppose that the samnple is obtained by including with half
the values which actually oceur at £, & quarter of those which oceur on
both sides. Then the function p(s) is defined by the propertics

PO} =3,  p(l)=p(-1)=13 and pls)=10
for all other values of s. It follows from (1) that
U(#) = V{t=1)p{—1}5-V{6p0)+ V(5 1p(l),
ie. 207(t) = V)4V {t— 1)+ V{t+1)]. <O
Thus, if, for example, V(¢) = {10—¢), then QO
20(8) = 206— 27— 1. N
Ex. 2. If V() is given by the table ¢ {’
‘ 203, 8. ‘
vy | 1 7 11y 14 1 3
calculate the naturc of the sample (e .fq}xa-lucs of t from ¢t =1to
t = 8, using the method of selection 1n . 1.

The above examples 1llu5trate the snnplo problem of deducing
the sample when the structure Yfthe original population and the
mode of selection are spcciﬁed

We afe Holb" Hil'é”iﬂb}él?f&f’to restate our previcus remarks in
symbolical form, Y}%lare confrented with the following pro-
blem: If a sample distribution U(¢) has been found and a
method of select\bn p(s) postulated, what can be deduced about
the original population V{#)7?

If the %)’?Pator E is defined by the relation

o Ef() = ft+ 1),
50 bﬁ& Eft) = f(t+3),
:ﬂ}éfl (1) becomes
WV Ult) = 3 Vit+sipe) = 3 BV Up)
= (3 Ew) V).

If the infinite series within the brackets has the formal sum
$(E), then we obtaint

Ut) = HEV),

T Cf. Chapter I, p. 29,
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whence, by the method of operators, the particular solution

of this equation is Vi) = ¢ YEYU(). (2}
Now Eft) = fE+D—FO+Hf@) = AfR)+£(8),

— (A4 1)),
in the notation of differences.
Suppose that ¢—1{E) = ¢~1(1-+A) can be expanded in ascend-
ing powers of A, in the form .
Ag-+ A A+ AN A
Then the function V() which represents the original populét\-{bn
is expressed in terms of the sample U(t) and its differénces,
e note that if () can be represented as a polynfmi‘ml in ¢,
then all its differcnces beyond a certain power.@aré zero and
T'it) is expressed in finite terms. \%

Ex. 3. Consider the equation given in Ex. 1 avaé. Vve have

() = (MEL B)+- 1jT(e) = 22t Ly

SN2E
Thuz N\
gt 47 . __;;:(14-:\}
Vi) = e VO <85 Ay U0

= (L ANIL38)2T()
= (1A} 1A raulipary org.in
= (14200
If, for example, Uit} = —‘\éﬂ.fn the range {—3, 3), then
W () = 9—s21 L,
Ex. 4. Suppose P}i&f}';{s) == ¢~% (g = 0} and that p(s) = 0 (s < 0).

The :&\.@;@ - z (Bvio - 2 v

He’np.e:.'; Vi) = £ Uty = Ut) — 3 Ui+ 1).

[
N

N\

£\
~;We return now to consider the general solution of egquation
I). This consists of the particular solution (2) and a ‘com-
Plementary fanction’, the solution of
Y1) = 0.

This function is to some extent arbitrary in character, as is
seen by the following examples.

Ex, 1, Suppose that U(f) = 15—¢2, and that the sample is
obtained from the population V() by the law

Uity =V e+ 0+ve—1)],
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where the range of values of ¢ required for the evaluation of
U(¢) is given by 9t 2

We have to solve the equation

(E*-1)V(t—1) = 2(15—¢2).
We thus obtain for the general solution
V{t) = 16—+ A cos jwt+ Bsin Lnt,

where 4 and B are arbitrary constants or functions of period
unity. N

Now V{t) must remain positive over the whole range of ¢
required, namely —8 <l ¢ <{ 3. We shall see that "du? condi-
tion may be secured by taking 4 = 0; for in that eaqc V{2 will

remain positive in the required range, prowded that B satisfies

the condition —7T< B<T. '\g'

Hence there is an infinity of solutions tO\ir equation satisfying
the given conditions for U (). o\

Ex. 2. That a hypothetical pt)pl]latmn cannot always be
found may be seentiram she following example. Suppose instead
that U(t) = 16—¢2, and thafthe law of selection is the same
as before. Since U(#) must: be positive, we require —4 S < 4
The general solution of: the equation for F(f) is found to be

Vi) = 17—t2+A cos w1 B sin Lt

With our law ﬂf\selectlon V{t) must certainly be positive in
the range -—N t < 5. Bat, substituting ¢ = 5 and t = —5
in the solutmn this necessitates B >.8 and B < —8, which is
impossiblel/ Tt follows that, with the given law of selection, no
populdtivn can be found to yield the given sample.

‘F\QS If 3U(1) = V(t—1) £ V(5 +V(t+1), then

3o = & +ET” V().
The complementary function is ew.dcntly
V() = Awt+ Bot, 1)
where A and B are arbitrary and w,, o, are the roots of the equation
B2 E4] =0,

i.e. the complex cube roots of unity,
If we write w, = cos §m+4isin §m, w, — cos §r—isin §or, (1) may be
expressed in the form
Vi) = A cos(§mét-a),
where 4 and « are arbitrary constants,
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The particular golution i= given by
3K . 3(14+A .
Vi = B Lty - - (1 1 A)_‘(—;_(l—:;l}_f-_l Uith
OBty - (1AL A - 3AYT U0
= (1 A=A SgAT AR T
= (1- A% U1
if higher differences of £(#) may Do neglected.
To this order of upproximmation, the general solution of t
Vi) - A cos(Eat+a)t U —1A2UE. (3)
Tt is clear that the determination of the hypcthetical popula-
tion (3) above is equivalent to the process of graduating OF\

(2)

he equation i8

Q

‘smoothing’ the errors introduced by the selective procesgas™
is explained in a later section. Our sample U{f) ha}g"zﬁeeﬂ
s, of the

formed by taking the mean of three adjacent ordinage:
histogram V(#), and our solution (3) represents andlytically 2
reversal of this process. If we confine our atfention to the
particular solution, for which 4 = 0, we nopg‘ﬁh&t when U(t) 8
a linear function of t, A2U(¢) is zero, 80 that V() = U(t). When
i 22113; 'qua-dratic function of £, V(t)"?nf('l U Aiflen only, b y_aérg_in

Ex. 4. Find the original populati,r;li"V{t). given that each reading
th of the true reading

shown for Uiz) is the true reading @t ¢ plus 1
at 41,
Copor 1 e @Y 4 )8 6\"|8|9
Uy |13 | 228 \ 3124857 | 388 ‘ 39-5 | 382 | 348 [ 30 [ 211
We have to solve thi equation
N Ty = VSV 1)
For the readifigs shown this gives the solution

O Vi) = 36— (-6
\\~ 6= ’

Bemg?j?;;an Law of Selection '
'Q}émsider first the case in which pls) = 2(7”11)”1(1—-?)1"’»
ére p is a given positive fraction. The equation (1), p. 148

then becomes

Ul = (1—pPV 1)+ 21—V O PV D
We have thus applied a Bernoulli process of selection to t}}e
set of three comsecutive ordinates of the histogram V(2) it
order to obtain the sample U(t); and if § << p < § the ?rdplate
at { is swept into the readings with a greater probability than
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either of the adjacent ordinates. If we put g = 1—7, the
equation may be written symbolically as

Uty = (g% E+-2qp-+-p*EYV (1),

or ) = PLED
B
Thus the particular solution is given by
: E
Vit) = ———_Ut) = {1+ AN 1 pA}-2Ti (¢
0 = g U = (L+HAK120)20 ) N
= (14+A)1—2pA+3p2A— 4 (— 1) —tnpn 1AWy )

] . '\
=1+ 3 (~1pp ot Dp—nlarv. O
Suppose generally that p(s} is defined by the fopaiula
I\ N
_fp(g) — ﬂcfs_'_mps-{-mgn—m—.s’ O
where 7 and m are given numbers. There"will now be n+1
terms on the right-hand side of (1), w{ich becomes

n—m )
— n S A Em —s 17 £-1-.8),
www_dbgtgzlgbrayaz;};g.%+m?3.. 4 ViEt-s).

or, symbolically, Uiy = g}i:;fwb Vi)

Hence the particular solation is

V(t) = E(1epA)-U(t) = (14+pA)-U(t+m).
The general solaticns thus

V() = (l—i-pé}th(t—,'— m) - (‘?;—1)1{}114—‘42t—!—...—l—An_lt”'l},

where A,R)i;, are arbitrary constants or functions of period

unit)f,\'w”

BQ}E’S’S Theorem

\'"\; “Bayes’s theorem, which by its misapplication has attained

a certain notoriety in the history of probability, follows ab
once from the foregoing discussion, In Fig. 25 the population
V(#), from which the sample ¥(t) is drawn, may be regarded
as contributing its quota to the sample at ¢ in the proportions
indicated. As we have seen, the total sample is

UW = 3 Vit+s)p()
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The contribution to this total at any position distant s from ¢
is F{i-+s}p(s). Thus, given a full knowledge of the population
7(f) and the process pis) of seleetion, we can say that a member

of the sample at © has « probability iﬁ—l—s_ﬁp@ that it has come

S Vieta)pl)
from the position t-+s, in the V(t) diagram.

¥it)
o) Vit-y Viten

Vi) Vit-2) @

it

A
&
»

Mmoo e e
7
%

FIGSEﬁ

This, in effect, is Bayes's.theorem. The frequency function
U{t) enables us to speb’kﬁ;‘t}ze probability that a member of the
sample will lie at ¢"this is the initial probability conditioned
only by the staterigent that the individual is a member of U(?).
At this stage thé-theorem enters to tell us the probable source
?f thiy va@}éf ¢ when further information is available—the
informatigh ‘being that the distribution U(¢) has been derived
fror'}..’f\»ﬁe‘sturce V{¢) by a certain process p{s).

”E§~"1. Three boxes contain balls as shown:

N\

Box 2 Box 3

1 bluck 1 black i black
1 white | 3 yellow 4 green

into it a ball from
What is the
black, came

It is known that a fourth box has dropped
Box 1, two balls from Box 2, and one from Box 3.
probability that a ball in this box, known to be
from Box 29

www. dbraulibrary.org.in
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Without the information that it is black, the Pprobability

that it came from Box 2 is clearly ﬂ_g—]—i = % We ask, what

difference is made in this probability by the additional informa-
tion that the ball is black. Actually, the additional fact coo-
verts the problem into a new one; and the comparison of the
answers fo the two problems, a step usually asgociated with
Bayes’s theorem, hag nothing to do with the question,

In order to calculate the required probability we haveo:
construct the functions V(¢) and p(s), the variable ¢ beitg the
suffix attached to each of the threc boxes. Thus, VN.): ¥(2),
and V(3) are the numbers of balls in Box 4 whipb:,c‘éme from
Boxes 1, 2, and 3, respectively. The probabiﬁt-,ies‘of a black
ball in the three cases are \*

p(1) =3, p(2) =1 and p(3) =} Tespectively.
Hence Y V(t+s)p(s) = 1.%—5—2..}}}\[.% ==

The contribution F(2)p(2) is 2 ¥ :&’hus the reguired proba-
bility is §/2 — . (O

The el liet b B R thefwo problems is now clear: the
probability of a ball drawn frain Box 4 having come from Box 2
is §, while if a ball is drawn from Box 4 and found to be black,
the probability that it ‘eame from Box 218 .

Ex. 2. Given 'n(ui'ns A, each containing v, white balls,
urns 4, each cpt}ba.injng vy White balls,... and =, urns 4, each
containing vewhite balls: one of the urns is chosen and 2 ball
extracted,(etiich turns out to be white. What is the probability
that it; qgﬁné from one of the n;, urns 4,?

may suppose the balla placed together in one urn, pro-
vided it is always possible to specify the urns from which they

(eame: we do not thus alter the probability of extracting a white
) ball. The total number of white balls is 7, vy~ngvaF . 7 Ve

of which 7y, come from the urns 4,. If now a white b'all is
extracted, the probability that it is from one of the set 4, 18

At flmg vy ngve-b Ly,

In applications of Bayes’s theorem, it must be understood
that the structure of the original population is precisely de-
limited: what we ask is whether, when a particular event among
a series occurs, ibs source can be traced to this or that element
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When the problem is stated in this way,
ofinite answer, If, however, we
e by raising a guery about the

siructure of the population, then we are faced with the solu-
tion of an equation (p. 148} to which a unique answer cannot
necessarily be given, since an element of arbifrariness is

present.

Ex. 3. An urn contains @ black and white balls, in unknown
proportions: a ball is extracted 2 times and each time replaced ~
in the urn. If v of the balls extracted are white, what is the
probahility that « ol the balls in the urn are white? ) \‘

The required probability is that of a subeclass of the subglass
of urns in the population of urns containing a black and white
halls, which contain precisely « white palls, Thuslwe must
imagine the urn in question to come from a populaisidh of urns,
each of which contains @ black and white balzla,\\the population
covering all possible compositions. In this popnlation, the first
subclass consists of urns confaining no white balls, the second
consists of urns containing one white ball, and s dbpg]) ikgy org.in
probability that, if an urn containing ¢ white balls is sclected,

v white balls will be obtained in‘?z.:'é)itractions, is by Bernoulli’s

theorem, " oy
oty
& & a

N‘_’“’ suppose that the probabilities of choosing the first, second,
third,... subelassgs f urn are Py, P1, Porn? respectively. Then,
by Bayes’s thedrern, the probability that the urn chosen is one

containing‘x(w",\ﬁite balls is

O
N oy {2 v _ n-v
IO il B
n} 1 v 1 P N 2 v 2 n—-v
T el (-3 o)
- —av{a___a)n-wj)a .
T T F T2yt -t @ 1" Pert]

that the solution of the problem

robabilities 1. Pore- about
If we make the

Chep. 1% 51

of the structure.
Bayes's theorem gives 2 il
attempt to recast the prohl

It will be noted, therefore,
deli_'ends on a knowledge of the P
which we have no information whatever.
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assumption that all types of urn have equal probability, then
Py = Pa = ... = Py, and the probability sought is

0&"'{&— a)?&-v/{lV(a___ 1 )'n —v_i_ 21.'{(5_“ 2):&—41 ,_]'_ b (tl-— 1)"1”""},
Tt is readily shown that this is a maximum for the value of «

such that & = Z: that is, the most probable composition of the
a n

urn is that which gives for the required probability the value ;:'-1 :
Extension to Functions of a Continuous Variable . .

Let V{t) be a function of a continuous variable ¢ ghibh is
defined in the range {(—oo,c0) and which gives_the proba-
bility ¥(f) of the occurrence of the variable in ghe\interval d
about the position 7. Suppose that a new pdplation is con-
structed from the distribution according to“ia;l\'le following law:
at & distance x from the position #, the sidinate ¥it+z) s o
be swept in with a probahility p(x) and’allocated to the position
t, the value of # extending over the@ange a << v < b. LU is
the probahility, in the-pew population, of a value { ocourring
in an interval df about ¢, thexlthe contribution to U(t) at the
position ¢ is given by 3"

"T”'(t—[—x)p(x).
Thus the proba,biliiiij(t) is given by

N\ b
\ Ut) = | Vietapla) de.

It shquld%e noticed that if the original probability function
V(t) has'a finite range, then the function ¥(¢+z), for vatues of
z W};lfh take it beyond this range, is, of course, zero and makes

_newcontribution to the integral. Thus U(f) has exactly the samé

~range as the original function V(#).

" Ex. 1. An interesting application of the previous results‘l%aﬁ
been made by Eddington.t Suppose that the probability
function w{t) for the sample is given, and that the la¥ of
selection is Gaussian, i.e,

plx) = -’\-fh—exp(—kgxg).

t Eddington, Menthly Notices, R.4.5. 73, 359.
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of the original population

Then the probability function ()

is given by the equation
ult) = i— p(iLxlexp(—h%?) dz.
N
Kow write
x* d%v

i) = o) te e

I "
(+dt+zfdc2 )() N\
o~\~
e exp(xﬁ)v(t), symbolically. N e
Thes  uft) = |- Gf explz d B ] o), (O k
Al | "“\
The integral is an operator as regards ¢, but a.definite integral
as regards z. \ v
Now J" exp(—a.:c—-bxz) dr — "/___’exp az/mw .dbraulibrary org.in
tu]l s o d 12 w,'. 7
en writing ¢ = —3 b = R?, wc:.“hewe

wl(f) = i\[\ ;:exp(g:z 4};,2)} w(t}-

Henee N 4
o(t) Z‘Q@(';Et_z 4&2)u(t)

A0 1ah
Nl {1 hzdsz+zf(4h2) ah "‘}““

Ay = u(z)—_-u"<t)+§@$u"(z)—--.-

\ w4
When £ is large, it is sufficient to consider the first fow terms of
this expression. Sinee u(t) is an empirical probability function,
it is better to express »(f) in terms of u(t) and its successive
differences rather than its d1ﬂerentlal coefficients.

Now u'(t) = Ault)— A“u(t)—i— L Asu(t)—.os
and wv(t) = Asu(t)+.--
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Hence

11 1
ot = u(t)— 4%2 {&2—A3+EA4] )+ 5 (). +
1 1 /11 1
= u(t}— —4;2 Aly(t) +——4k2 Ady(t) — iy (1_2 — 8_}13) Auft)4....

A comparison between the result just obtained and Bayes's
theorem is inevitable. There, the passage back from the
function U{¢) to V(t) was not necessarily possible for any given
function U{#) nor, when possible, was it necessarily unigie;
we saw that this circumstance was associated with.$h&Ffact
that the range of U(t) was not in general that of Vit),-and that
this depended entirely on the law of sclection’p(s). In our
example, however, the variable ¢ is contingéufs and the two
ranges are identical; the passage back, whend# can be achieved,
Is unique-—no arbitrariness is involved, \In' that case, Bayes's
theorem, as stated above, gives the{ probability U(t) that a
certain variable #, derived from asfanction F{f) calculated by
e pusseat, doined, b ). o from the rango (a,0). Thi
is the inverse form”of Bayesisitheorem as usually applied to
determine the ‘probabilityjinfcauscs’, and the application is
legitimate if we bear in miind that the method of selcetion p(z)
is assumed to be given( it cannot be chosen arbitrarily.

From a knowledge.of U(z) hoth V(1) and plx) cannot be deter-
mined separately:'and it is by ignoring this vital fact and by
tacitly assuming”that p(x) is some such function as unity or

X

k L N
Eexp(—]s&ﬁ), that writers have been led to conclude that

Bayes'gtheorem may be used to trace back, with a certain
dagffee of probability, the antecedent events which have give’ﬂ
" mge to the function U{¢). This procedure, as we have seen, i
3Wwholly fallacious.
In the foregoing example it is assumed that the law of selec-
tion is the normal error law. If this law is not obeyed in the
case to which it is applied, the result will be invalid in practice.

Ex. 2. Let us now suppose that the functions v{z) and p(z}are
both Gaussian, so that

v(x) = ?—wexp(hh%z), and p(x) = -gniexp{—k'%z),
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known constants, Then w(f} is given by

where B and 2’ arc

o

d J exp{—hﬁ(ﬁ—{—;zr)z——h’”ﬁ}dx

off) = -
fm* R\ (o g éi)j da
et o) | vl e ]
hy completing the square in the exponent. ~
2
By changing the variable to 2 = x4 }72%_-;—,&, we reduce the'\:\
integral to the form o)
2 Al N
B2 R dy = —— T
[ ot = s
on svaiuation. \ .
It follows that , x',\\'
ut) = I ex ( ﬂ%ﬁ)
= e TP\ T R

Hence the function u(t) also follows ac(aussian 14 w-dbraulibrary.org.in

ult) = % gx;i(:;h"ﬁcﬂ), |

AT
where ) 'i...k_}.b_,_,
YT

If the standard deviations of v{¥) and p{x} are @ and ¢,
A X

1 N 1 1 de-
eot / = s THE standard de
Iespectively, S"(i :hh&t o=y % = W2

viation 0’”’9&&@’) is therefore given by ¢™ = ot 1
E_ﬁde}‘ﬂy the theorem we have obtained can be inverted;
for}g @(1) and p(z) are both Gaussian functions, similar reason-

m&sﬁﬁﬁﬂ that ¢(x) must also be (tanssian. Thus;in conclusion,

%6 have the result: ' 14
If the distribution of the original pop ulation and e p?’Obf:?:i:f)y

of sompling follow the Gaussian law, then the mﬂ??ze also I ;

the Gaussian law; and if the sumple and the probability of 4P ing

Jollow the Gaussian law, so does the original population.
Ex. 3. This result may be oxtended to & series of sa,mple:;
each of which is dvawn from the preceding one. Thus, suppo
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that v(t) is a Gaussian population and that exp (~A%?) is the
probability of the sampling. Then a sample u, () of the popula-
tionis given by

u,(t) = f v(i+x)exp(—h2r?) da.

Then, by the above theorem, u,(?) is of the form 4 exp({—his),

where 1 1 1 N\
75 = 7 T 7
BT R R O
If now a sample u,(#) is drawn from the sample) (1), its
magnitude is given hy N
u(t) = [ wyft+a)exp(—hAEYiz,
. N .
and the corresponding constant %, sa,\tﬁgﬁcs the relation
1_ 1
BT RYE

www.dbraulibrary .org.in® &
Similarly for a sample. #yt) drawn from wu,(f), and so on.
Hence the constant %, spesifying the nth sample in this succes-
sion is given by

"\

11
A FRT R T
A\ RE ORI, R
Adding the n{eguations so ohtained, we have
A%/
O 1 1 7
Q2 BTt

2z \‘
..Ihgrms of the standard deviations this becomest

NS a2 = g24-no".
O

N/ Two-dimensional Distributions
Suppose, for instance, that a sample Ulx,y) is obtained by
taking the mean of the values of the population ¥(z,y) at the
four points (x4 1,y4-1). We then have the equation
W, y) = Vie+ Ly 3+ Vie—1,y+ 1)+
+V@—1,y— 1)+ V{z+1,y—1)

+ Of. p. 130.
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If we write

EV(z,g) = Vie+1,9)
and FV{x,y) = Viz,y+1)
we obtain

W,y) = (EF+E-F-+ESF1+EF)V(y)
— (B4 EY)F+FY)V(zy)

(BRL(FED) A
= T Ea Viz, y)- O
The particular solution of this equation is \ ~
Viz,y) = __4EF ‘”3‘\”‘
W= e Y @
(14+8)1+40 )

T I IEAT AT HRATATR)
Whr;}hreu 2he operators A and A’ refer to x an.tf\;}'l'especﬂ"el.‘?’-
Vie,y) = (14-AN1+A(1 ——ﬁ—!j:g}‘fl\zi <} Xyww .dbraulibrary.org.in
XA 1A U Y)
— (1A Y1 )T (@ 9)
= Ulz,y)— é(A':’:-{—A’E)U(w, y)+ia2U(=,y)-.
To this must be adde&ﬁié complementary funetion '
A sin %qxf—{;:B cos Lmz+ Csin 1my+Deos imy.

ecLX'- A cortain(Substance is being deposited on the inside of a tube
at . m lengt i@:\d measurements of the extent of the deposit are taken
intervals of one second at distances of 1 em. along the tube. The

fOIIOWiEg\a'}B the results obtained {in grammes):

.y O l Values of ¢

\‘:"’ 0 1 2 3 4

a75 | 325 | 375 | 425 | 475

3-85 ] 4-45 | 505 | 565 625

Asstming that the readings at (x,1) were really the average of those ab
zand x1 1, taken at times ¢ and ¢+1 respectively, correct the above
&E %0 as to give the true values at (%, £).
80
M

g 1| 035045 ) 085 065 | 078
w 2| 065} 085 105 | 125 | 146
o3| 115 | 145 | 176 | 205 233
% 4| 185 | 226 | 265 305 | 345
G

6
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If the true value is ¥{x, ¢} and the sample is Uz, 1), then
Ulz,t) = H{V(z, 0} + Viz+1,64+1)

= HEF+ 1)V, t).
Heneeo

Viz,t} = Ul, 2)

2
EF+1
_ 2
C(+A)1I+A)
= {1+ $(A+A 4 AAN Wz, ) \
= (1= HA+AHAA ) HAF A AN — )Tz O

and the problem ia reduced to that of constructing a twqfdl;'l\ differenca
table from the one given. 3

. £)

' 4 ‘.0
<

Two-dimensional Continuous Distributions oN

Suppose that the given sample u(z, y) is ) eontinuous function
of two independent variables =z, ¥, &nd%hat it is derived from
& population v(z,y) which is also_acedntinuous function of the
same variables. Let the selective"process p(£,4) by which
(2, y}is obbumdidfrinere(in y)ohe such that the probability of
choosing & sample in a regien of area d¢dy surrounding the
point (x+£,y+7) is p(£y) dédn. Then the law connecting
sample and populationis evidently

,{ o m

ubegls="[ [ vlwt£y+niple, n) dédy.

) -

Let us gipply this result to the case in which the law of
selection{p Gaussian, so that, for instance,

’. :\\ »

k
‘ R )
$ ‘We then have

we) =2 [ [ otot g+ njexp(—hag—kont) détn

—a3 — o

If we denote the operators 8/6¢, 8/ by D end D’ respectively,
We may write

e -6 y+9) = vlz, y)+ (ED+ D' Yolx, ¥) +(§ﬁ;-1’32)-v(x, ¥)e
= exp(D+nD' Yu(e, ).
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Hence, svmbolicallv,

wx, ) = Mﬂ .[ ’ exp(ED- LD, J)exp{ (h2§2+L3 }d&d'q

- =i

ey

[ cxpn—agtexptaKenpte ) dé

.

3

23 8"‘—'_'35

= % exp(¢ DR dE J exp(pD’ —k*n?) dy v(@, ¥)-
T _.,:x:. . i 'ft\:\"
h ‘?:J :,0\\ P
Now ~ J exp(eD—REY) dE = exp(DHE) N
N : "G
RO
and - j exp(nD'—k¥ydn = exp{D’ 2{& ),
% )
8o that ulz, ) = exp(sz‘lhz—[—D'gﬂkﬂ)\x 4).
wy.dbraul
Thus 1;(;;:’ y} — expl_- ( —f-’.‘_%z_.z)}u g y\'\i raulibrary.org.in
1“
[ _A%Dq-{-z* (4k2) N ) S ]u(»l?: )
e of side 27'

Ex. Supposc thap( 53:, y) is the mean value over & S UAT
sbout the point ({ .’:ﬁ then

o

uz,y) = %" f o(w+£ -+ dédn
. \ R,
) T T
\;“= %ﬁ J‘ '[ explD 4D i, y) dédn, s before,
-7 -7
7 T
= 4—%—,_ j exp(¢D) d¢ I exp(nD’} dn D))
-T g

,[‘fx—"@-}’lﬂ@] [exw’ﬂ?ﬂ]vmy)
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Henece h Th
YY) = Soh D smh 7D U V)

= (I 3T2D L (13 T2D ) e )

B ot :
= u{x,y}—&Tz(—E (-E) approximately,

¢a® | oy

if higher derivatives of wu(x, ») may be neglected,

2. The determination of a population from a given set
of samples .
On the Determination of Hypothetical Populations D

The crucial problem with which this chapter has Been con-
cerned is how o make the fullest use of sample&off a’population
for the drawing of conelusions regarding its. &tfcture; we are
in fact trying to arrive at a mathematicalMinethod that will
assist us in learning from experience.  The general principle,
already adopted in Chapter VIII, whlé\ﬁ Ave use for this purpose
may be stated ag follows: PN

(IMW@,&BSHm;&dmgdﬁhypﬁthétical porulations capable of
providing the samples founds\ ™

(2) This capacity involyesthe further assumption of a method
of selecting the sampless,

{3) We can then wiite down the probability that from any
one of the class (fmj)ula-t-ions, with this method of selection,
precisely the given set of samples will be obtained. The proba-
bility will iy gertéral vary for different members of the class of
POPHI&tiOJ:l{;. ‘we then determine the member for which this
probability’is greatest, and choose it as the ‘most likely for
the given set of samples in contrast to the ‘most probable’
sample.

~ JThe term ‘most hkely’ is used here because now we are
‘actually concerned with a new type of problem; we are not
in fact discussing the question of the probability of occurrcl‘lc&
of & particular population among a given clags: the probability
18 now attached to the samples, not to the population. Thus,
the ‘most likely” population is defined as that member of 2
given class which yields the given samples with the greatest
probability,

Suppose, for instance, that ¥y, Zy..., &, are the measured

s
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observations of a number z; then the deviations of the observa-
tions from x are respectively x—my, £—xy,..., T—2,.
If p(e) is the probability that the method of observation gives
s deviation of magnitude e, the probabilities of obtaining the
stated deviations are respectively
ple—zy), ple—a), .., plE—2,)

Hence the probability of obtaining a combination of deviations
5—1y, T—2y,..., -— %, simultaneously is the product ~

P(x‘xl)p(x_xQ)“‘P(x-—xn ' £\
We propose to assume that the best approximation AT
derivable {rom these samples is that value which mg};es"the
given combination of deviations the most probable that would
ocour in a sample of » observations. In effect we'inﬁ:{ﬁire, what
process of sclection applied to the readings » will\give precisely
this combination with the greatest probability2’ We are now in
4 position to apply this principle to a serfedof cases; we illus-
trate first with a case in which the samplos have been obtained
by a Bernoulli law of selection.  o§ www.dbraulibrary org.in

The Method of Maximum Likelibood

Suppose that the members of a population of given nuntber
N possess a certain chardeteristic in the unknowz proportion
p:1. I a series of sagples #,, Ny,... in number drawn from it is
found to contain phe ‘characteristic in the proportions r,/m,
73/n;..., what infqﬁﬁation can be deduced with regard to the
value of p? This is to raise a problem in induction if it is
implied thats¥he population has to be specified by means of
the samples; and like all such problems it can be reduced to
a dedaetive one by making an appropriate assumption. We
Wﬁtﬂafte a class of population, capable of yielding the given
Supiples, for which the probability of drawing the samples is
calculable; we then inguire which member of this class will
with the greatest probability furnish precisely the samples that
have been found.

Thus, if a penny is tossed 100 times and found to give 50
heads, any probability p of obtaining & head, other than the
value p = 4, would give a smaller probability for the observed
oceurrence than if p were actually 4.
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If we apply these considerations to a class of Bernoull distri-
butions defined by the probability law =\, pr(1— P, where
# 18 the size of the sample and r members possess the required
quality, then the problem resolves itself into finding the value
of p for which this probability is greatest. Since p does not oegup
in the coefficient »C,, we have simply to maximize pr{l—pya-r,
that is, to choose p so that rjp = (n—r}/(1-—p), or r = np.

The expression p*(1-—p)»—is called by X. A, Fisher the ‘]jkel'k
hood’: it is not in itself a probability, as we have seen, butan
instrument for selecting the ‘most likely’ populatiod_ from
among a given class. O

Ex. 1. An urn contains N hlack and white ba..lls(,~}i‘;)”0f which
are white. From it are drawn n, balls, cach beingPepliced before
another is drawn, and 7, of these are found to he\xfhit-e. A gecond
such extraction of n, balls is made, and amduy them arc r, white
balls. What is the most likely value of/p /

The probability of obtaining the sanple in question is

'"’10,. prl(l_p)?:,-r. % Tagq;j’rz(l__p)ng._. ra

Thus'ts it %ﬁiﬁ%‘%ﬁgj} for s#hich this probability is greatest
we have to maximize the glpression Pl —pynite-nT, In
analogy with the preceding tase this gives 147, = (B R)p.

Ex. 2. Suppose thafMhe », balls are marked as they are
drawn and that in fact'no ball is drawn twice. If these n, balls
are now removed\%hé probability of obtaining a white ball at
the second extfaption is

N = (@N—n){(N--ny),

and t-h:aj{ :(}E"obta,ining the given samples is proportional to

thiﬁ,\\; pn{l __p)ﬂrvr;pi'z(l __pl)ﬂ.g—r,,_
L&, to

O PN (N —nyfr— Ky
) The value of p for which this is a maximum is given hy the

equation
o tmon Nry Ning~—1y) _
P A NN TF et N
It will be noticed that, if & is large, the value of p is given by
N_ M7y 1y My
p 1-p "p 1-p
{n;+n,)p, as before.

0.

— 0;
s0 that ?'I—f—rz -
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Fx. 8 N == 14,5 .- 5,7 = 2, 0y = 2, r; = 1, then in Iix. 1 we
have p == 3{7 = 0-429. In Ex. 2, the most likely value of p is found by
maxitmizing the expression
PH1—p)¥(Tp—1}11—14p).
Thus p is the root of the cubie
343p7—469p?+164p—11 = 0
lying between } and 1, ie. p = 0-404.
The method of maximum likelihood is applicable to hypo-
thetical populations defined by more than one characteristic,

For example, suppose that an urn contains balls of ¢ difierent
f a sample. )

of 1 balls is extracted and found to contain r; balls of the first

colours whose relative frequencies are y, Pay. P 1

type, r, of the second, and so on, we may inquire whatyvalues
of py, py,... make this sample the most probable. The)proba-
bility of obtaining the sample is, by Bernoulli’s Théorem,

7! )
= W,—P{‘PE’-—-P?’,:Z\\' (1)
1rfge e ..\“
where PrtPat P =AY (2)
and ?'1+rz+---+7'¢’£3 n www,dbrauljbrarmrg.in

If P is & maximum, so is log PyWhenee, if 8p;, 3p;,... denote
variations in py, ps..., we have the condition

L op. o TEpet... 4 Lop = O, (4)
P P1jf'§ﬁ?’2+ 2 Py
where, by (2),  8by-+dpe-t..+p =0 (5)

Combining (4) ahd{5) we see that the conditions for a maxi-
mum are 3

W

NN pr -yt T,

marre L Tt g by (3).
R :f?l P p1+P2+"'+Pt

It follows that

N Py Ty, Pp=Taft o P 7/n.

and yellow balls in unknown pro-

Ex. An urn contains black, white,
ed, and six others

portions p;: pg 1 p,. Six balls are extracted, replac

Black | White | Yellow
1 2 3

__3__.___2_—— 1

extracted. If the numbers of black, white, and yellow balls obtained in

Q"
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the two extractions are as shown, the values of p,, »,, 1, for which the
probability of obtaining this pair of samples is greatest are
PL=P= Py = 4
The prabability of drawing these samples will then he
SO L
I FIETRET I

Black Wkit;_ {_}.;(:How
2 2 | 2
2 2 | 2 N\

———

If, instead, the two extractions had given rize to the Secomi\set of
nurbers shown, the values of g, p,, p; obtained by maxinhizifg the
probability of obtaining the samples would have been as,Before, but
the probability of drawing the samples would be 4 ™y

, [ 8 17 LV
and this is less than P, In fact we have N

PP = 2*;(33){{4}3.

When we have determined thepepulation for which a given
sample-is thrauldetapreBablt, it does not follow that even that
sample is a very ‘probable’ giie; its probability will depend on
the number of types that\fight be drawn from such a hypo-
thetical population, and oh the relative frequency of eccurrence
of each type. Let uslilustrate with a simple problem.

An urn cont né ‘Black and white balls in an unknown po-
portion p: 1. {&%ta-in number n is extracted, with replacement
tmmediately’after each extraction, and it is found that r of these
are whifgh JA second sample is obtained in the same manner.
Let_ussguppose that in all 12 balls have been drawn and 6 of
themi\found to be white; then the second sample consigted of
b—n balls, 6—r of which were white.

AN
\m )~ Since the ratio of the number of white balls extracted to the
total number is §, it follows from the previous discussion (p. 166)
that the ‘most likely’ value of p for the hypothetical population
is §.

Consider now the probability of drawing just such a pair of
samples from a population for whick p is actually equal t0 i
The probability of drawing the first sample is »C,(})?, and, since
the balls are then returned to the wrn, the probability of
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drawing the second is 12-2C;_(1}%-»  Hence the probability
of obtaining the pair of extractions is
P = n(L12-n(,_ /o2,

and this will of course vary with » and r. It is not difficult to
determine the values of z and # for which P is a maximum;
since n and r can vary independently within the given limits,
we requirc

n—lq_lli—nos_r < nqu—ncs_r = n+lq_11—n0‘6_’w-

and 110}“__112-1107_r < nq_u—-noﬁ_f e ﬂ.q‘+112—?105“r' p \\
& N
From these conditions it follows that O ’
&—1 {n<l§t, and E—1<1"g§. ~‘ 3
6 6 2 2'\'\

In virtue of the restrictions placed upon #, thesscond condi-
tion is a consequence of the first. We thus obtain the solution
=55 =10 or r = 1, n = 2, and with €ther of these pairs
of values P — 504/212 = RJ’ say. )V .www,dbrauljbrary.org.in

In the accompanying table we give j:h'& };roportions of white balls
obtained in twelve pairs of extractiong\with the corresponding values
of P and P/P,. Thus, although F, ig.ifself amall, it is 504 times as great
as the probability of obtaining the first pair of extractions shown.

First drawing | gSs}md drawing |Px 2| PIB,
6:6_ N\ 0:6 1 | 0002
51500 1:7 7 | 0014
47> 2:8 28 | 0-056
SNE 1:6 36 | 0072
9. 28] 2:7 105 | 21
7N\Vi:ia 5:8 294 | 0448
N\ 2:6 4:8 225 | 0-45
N\ 2:3 4:9 378 | 0-756
O 3:6 3:6 400 | 08
RS 2:4 4:8 420 | 0-84
\‘“ 0:1 6:11 462 | 0924
1:2 5:10 504 |1

The Method of Least Squares

The second law of selection to which we shall apply the fqre-
going principle is the Gaussian. It is worth while ren:ta.rkm.g
that the method which we develop in part covers what is vari-
ously called curve ﬁtting, gmoothing of data, and graduation.
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Each of these processes, whether it be the determination of a
smooth curve that lies evenly among a set of points, or the
smoothing out of an irregular curve, or the specification of an
algebraic expression to cover a set of data, is in effect the deter-
mination of a hypothetical population, since cach is merely &
step towards specifying values of a variable at positions other
than those immediately supplied by the data.

If the assumed hypothetical population is Gaussian, then i m

the notation of p. 165, p(e) = lf—-exp( h2%?), 8o that the proba~
~NIr

¢
bility of obtaining the given sample is AN
= oxp{—hz—2,)") 2 exp{—M{e—z,)}.. éfqﬁl#w—%m

«\
hn

= mexp{— Z{:c :c\) }

For a given proeess of selection, 4 is aknown constant; the pro-

blem, as be to find z so tha‘t the probablhtv iz a maxi-
W W, Lau raly org.in

mum. This is equlvalent to determmmg z 80 that Z {z—mx, ) is

a minimum and, ag we have seen, gives as the value of & the
mean of &, &y,..., x,. ~Thls method of determining the best
value of an observatmn by assuming that the sum of the squares
of the deviation {fmm it shall be a minimum is called the
Method of Least, Squares. Some writers prefer to begin with
this method &8 the initial assumption, without directly implying
the use of\a Gaussian law,

Dete&n’mtiaﬂ of the Precision Constant

e probability that the set of readings zy, ¥y,...,%, Will
~ D‘ecur is

QO B oexp{ 1 S (o0,

where @ is the mean of the readings.

Using the same principle as before, the value of & to be chosen
is that which makes the above probability a maximum. Thus
h is determined by the equation

& v exp[—1t 3 (@, —a)?]} = O,
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20 that % — %S (r—a)
18 3 - 1
Hence B2 = 2_2(_-’4 —_-d)é = 57

where o' is the standard deviation for the given set of readings.
1t follows that our choice of  is such as to make the standard
deviation for the set ,, ..., ¥, coincide with that of the
assumed hypothetical population. ~

N

Curve Fitting A
Now suppose that ¥ = f(z,a) represents a possible serieg-Of -
hypothetical populations, obtained by varying @, from, Q‘,{ié' of
which the given sample is presumed to have becn ('h‘m}vn.' As
before, we shall assume that the probability of cqm?nitting &

error of magnitude e is —}f—exp(-—hﬂeﬁ}, and fogat the precision
~r 7>

constant b is the same for each measurgr?}eﬁt irrespective of
its position in the range. Suppose thaﬁ readings ¥, Yoo Ya
are taken at the positionsy z, By coalins anthiﬁh@tdgmr}’bbr?l%rg_m
ate the corresponding values of.the hypothetical population.
This assumes that the z's are aegurate. Then the probabi]ity of
drawing this sample from t{é population whose parameter is @ i3
Js R e - N
EL.XP{—-— ]b-{Yl—,ng}«_-’?-r exp{—A¥1 o —Ua) J
o0' > ﬂ Lid
< _ I exp[ 1Y (B
) p” <

#

where T, Yg,"\,\}, depend on the parameter ¢.

We propose to choose as the hypothetical population among
the setyf(@, o) the one that makes the occurrence of this set of
readings the most probable. We have thus to make > Y—,)?
&upinimum, i.e. we have to choose a S0 that S [fx, 9)—¥.
is & minimun, Hence @ must satisfy the equation

i 2%,,, a)—y, 2 =0,

and thus, on the foregoing assumptions, the hypothetical popu-

lation is determined.

T If the readings are weighted, i.e. if soveral readings occur at the same

position, the #'s are not all different.
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x| 1 S22 03 ] 4 ‘ b
g| ~08]o9o:31]63]6s
The values of ¥ shown are subjeet to accidental errors. Given that
the population ¥ from which they are extracted is one of the system
Y — 2r+a, determine the best valus of a.
We have to choose a so that the expression

(284aP+(B1-Fay - (294a) 12T+l L (32 ap

Ex. L.

14+
is a minimum, whenee g = — — = —2.G4,
5 ~
Ex. 2. Find tho best values of ¢ and m if the values ¥ are given by
the function ¥ = mx+a. 2 AN

Ex. 3. If it is desired to represent the following values ’Q:f‘y a:pproxi-

mately by a funciion of the form y = a4 bx |-c22, dqtc{gmine the best
valucs of a, b, and c. o\
2} 0 1 2,8 1 45 8 N7 g8 10
¥ 798| 11-51 | 1402 § 1546 . 16-01 1551 1398 ©M1-52 | 5-02 | 3-31 | ~2
Here a, b, and ¢ have to be chosen to mathhe sum of the squares of
tho deviation from y a minimum, <!

Nore. Suppose that we wish tosfit)a Gaussian law of the form

. — 2 e ) ¥ joht proceed b
Y = ex (a—f——%%—li-c{ﬁi to a distribution” curve. We might proceed by

R “Suppose that

taking o‘“g’ﬁ?l s mﬁaﬁyﬁ&x‘%}ﬁg&he best values of a, b, ¢ {as in the
above example) for the readingsy Such & method, although convenient
in practice, is not strictly Justifiable, sinee, if the crrors in y are dis-
tributed aceording to a Gaustian law, those of logy are not.

Ex. ¢. Find the va,,l\iés of @ and b for which the parent population
¥ = ar+bsing WQ{&,give the pairs of values

N | 2 0 08 0 14 | 20
SN0y | 0202 | osse | 1821 | 3421

as the mogh\probable, assuming that the deviations follow the Cans-
Si&n 1&3’7\;\“

O
T?gﬁine of Regression

Xy Loyuany iy,

yl: yzr"" y-n
are 7 pairs of data related in the semse that changes in the
values of the 2’s are accompanied by changes in the ¥'s.
Assuming that there are no errors in the z’s, we wish to deter-
mine to what extent the numbers (z,y) may be considered 28
derivable from the hypothetical population

y = Az+B,
assuming that the deviations follow the Gaussian law.
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We have thus to minimize the expression.

Z (Az,+ B—y, )2

This means that 4 and B must satisfy the equations
Y z(Az,+-B—y,) =0,
z (Ax,+ B—y,) = 0,
that is, ASe2tBY v, =35y, ' (1)
Az A4nB =73 ¥, (2).
Tt is convenient to replace z and y by their deviations framm,*

the corresponding means X, Y writing # = X+£, ¥y = Y%[—'r,:,
we have PNY

Sa=nX, Xy =nk, 7\

Sat =Y (X+4E) 12 = nX24Y &, \\

and 3 z,y, = EKX+EXY+m)wﬂXY+Z§Wr
Thus (1) and (2} become

A(X2+Uz)+BX XY_F Z{é’ixﬂ’ﬂbl -atilibrar y(%)rg in
AX 4B =T )

where o, is the standard dev1at10n of the z’s from X.
So]vmg (3) and (4) for 4 and B we obtain

. s ‘”1‘\ z ‘fr B
A w Z Er Tr z gg H
Wy XSt
B y—= v
3&
Hence the, hg,ipothetlcal population is given by the curve
':‘::'\ Ezfrffr (SE X)

Tius curve is called the ‘line of regression’ for the given data,
E’nd can be written as
y—¥ _ =X (5)

Tz

Oy
where o, and o, are the standard deviations of the 2's and ¥’s

from their respectlve means and

SEm
VR ESY
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Correlation

We are now in a position to examine the problem of ‘corre-
lation’. Suppose that the two sets of data as in the preceding
paragraph have been found. If the points (%), ¥,) are plotted
on a diagram and form a ‘good’ curve or lic very nearly on a
straight line, then the principles of curve fitting for the selection
of a hypothetical population can be applicd at once beeause the
necessary specification of the population is not difficult to make.
When, however, the points (z,, 3,) are so scattered as to Tender
this impossible, we are at liberty to make any redsonable
assumption in terms of which to interpret the data. (O

Two methods of procedure are usually adopted,* We begin
with the assumption that the z’s and y's are att&mpted measures
of points on some straight line but that th"é):’s are meagured
without error. Then it follows from the previous section that
the hypothetical population is given bxy\\

y—¥ _ 2o

www,dbrauljbrary.or%‘l o\ N\ ;‘J'x ’
where X, ¥ are the means. jé;f‘ﬁhe x's and y’s, o, o, are the

corresponding standard gleﬁx'{iations, and

p o AN (X—a)(Y—y,)

N E =P S (Y=g %

The curve so ‘obtained represents a special member of an
assumed clagg! bf hypothetical population, called the ‘line of
regression»gf’y on =, for it measures the extent to which a
variatig\nthi’ z effects a change in y; in fact, when  changes by
oz Yfdy-thanges by r.

e could, however, have approached the same problem by

:q}lébsing & second eclass of hypothetical population on tk:e
<\; assumption that the y’s were correct values and that the '8
involved errors. Tt ig easy to see that the member of the
Population then selected would be
z—X g4V

’
L Uy
This represents the line of regression of x on y; when y changes
by o, x/o, changes by 7. Thus r is a measure common to both

the hypothetical populations; it is called the ‘coeflicient of




Chep. IX,§2 DETERMINATION OF A POPULATION 176
linear correlation’ and is taken to be a measure of the extent to
which the sets of numbers z and y are interlinked.

It is clear that if the two lines of regreszion are coineident,
then #2 = 1, and if they are at right angles, » = 0, In the case
r = 1, there is maximum correlation and x and y are linearly
related over the whole range. When r = 0 the variation in
has no influence on the variation in . Thus # is a number whose
absolute magnitude lies between 0 and 1. We note that r may,
however, be negative, in which case an increase in » is accom-

panied by a decrease in y, and vice versa. O\
Ex. Twa sets of numbers are chosen in the intervals (0,4), (5:,‘9),
{10,14),...,{30, 34), with the following results: N
x11|6|12[16]20] 25| 32 D
ylal6|13f16|22]|28;31 2N\

We thus obtain
X=16 Y=17  I{(X—2}T¥ i~ 679,
T (X—a) =604, 3 (Y—y¥SET6,
50 that r is given by ANV
679 679 g ™ libr o
= " = — == (-0 B aulibrary.org.in
"= J694x676) 684 ,Q:?? appriiifeldy

Generally, if we have two sets of n}i}nﬂers Tys Tgyeres Ty BNA Yy, Yarees ¥
such that z, and v, lie in the jnterval (%) and if the differences
t,—t,,, are small and equal fgiall values of #, then 7, and y, will cor-
relate almost exactly quea.ﬂir.x

The method we hsht} used to find the coeflicient of linear
correlation is capable of immediate extension. Thus, for
parabolic correl#tion, we wish to find the value of A for which
the hypothqtie}f population

Y,’J#\XXQ, where X' =

X—z
ro oy =204,
Ty '}

bestfifs the given numbers (X1, ¥1),..., (X3, Y3). .
\Wé have therefore to choose A so that 3 (¥—AX;) is a
minimum,
Honee SXPY, o3 (X-z)T—y)
T3 XE T g, (X
3 (X0 3 (X2 ¥—5)

= S (Y —yh 2 (X7
The interpretation of A in this case is, of course, quite different
from that for r in the previous case.
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The Method of Maximum Correlation

Let {2y, 2y,...,%,) and (g, ¥5,.... ¥,,) be two sets of observations
obtained by two different experimenters to represent varia-
tions in the same phenomena at positions « which are accurately
given. If the experiments have been carcfully performed and
the differences between corresponding pairs (x,, %5} of observa-
tions are due only to accidental errors, it follows that the two
sets will be highly correlated; in other words, the line of regres-
sion of z on y or of y¥ on z will be very near the line Y,
We wish fo determine from these observations a thipd set
(21 22y, 2,) Which correlates most highly with the given sets;
that is to say, if r,, and r,, are the correlation, coefficients
between the #’s and the z’s and between the/#’s and the 7’8,
respectively, then the 2’s are to be chosen\go,as to make some
symmetric function F{r,,,r,.) a maximurm Fach such function
defines a class of populations. Consic{em\r particular

P =r 6y
Letv&bwﬂbﬂﬂdi@abﬁﬁh@imefifné"bf the three sets of observa-
tions, and £, ,, and {; the deviations of «,, y,, and z, each from

its mean; then n o n
gg.s‘z';"}'szggsﬁ 0,

._ Z fs s .im?\ — zfs ‘:s

r, — T = s Ty = ey
TONZETRY T JSEID v JEazDh
To simplify\the notation we write.
NS
w\2 7 {
AL =a, s —p, _ b
OIZET™ wT™ T3o
Thé?}che above relations may be replaced by

\ Z“s:stZZﬂa:O’

o

Sa=SH=3d=1
Yoy = 2 @y by, Tag = 2 @yC, Yya = z bes.
Now if the function F is to be a maximum we require
SF = br,,br,, = 0, (1)
where Oy =3 adc, and b, = 3 b,5¢. 2
Substituting from (2) in (1) we thus require
S (a@,+-b,)%, — 0. @)
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From the restrictive conditions on ¢, we have

S ¢8¢, =0 and > 8¢, = 0. {4)
Hence, from (3) and (1) we obtain

3 (@ bot-Aetu) 3¢, = 0,

where ) and p are constants to be determined.
Equating the coefficients of 8¢, to zero we have

a4, bt regtp =0 (3=12..m) (5)
Summing the s relations (5) we obtain 8
S g+ I bAAS coton =0, <O
whence we deduce that p = 0. A
Multiplying (5) by ¢, and summing, we have )
by = 0 {
Accordingly (5) takes the form O
a+-by = (Fprt7y:iCe (s = 1,2,{.&). {6)
Ml:ﬁtiplying {6) by a, and b, respecf‘;iv:e]y: At SUBRIUNE PP or g in
obtain 1y = (s + !’yzj”;z } -
147, = (fngﬁz“’},az)fyz'

From (7) it follows that &= 7y ()
Equations {6}, (7), & c{‘(ms‘) serve to determine 7y, Ty and ¢,.
Thus from (7) andy(8)\we have

= 1+ T 9)
(10)

P \fxz = Tya
and from (6) ()" ¢, = (@b +7a))-
e in the case with which we are concerned,

Sinee T@{ﬁ'ﬁosiﬁv :
and is mbreover less than unity, it follows from (10) that ¢, 18

slightly greater than the mean of & and b, .
Rgturning now to our original notation we have still to

determine z..
We have 2y = Z+i = Zi+yts (11)
where y = (3 £2) and Z are unknown.
We propose to determine the latter by the method of least
squares. We have thus to make
E {(zs_‘xs)z—l_ (Za—'%)s}:
N

4260
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ie. Z {(Z~f—y{:s—X—§s)2+(z+‘)sz— Y- N1,
a minimym for variations in Z and y.

We thus obtain the equations

Z = HX+7) (12)
and 2'}’ z 03 = z gscs+ Z a Cas
or 2y = r (3 DA X ) by (8).

In terms of the standard deviations this result may ,Qg
written as Y = nrglo,ta,). A 02)
Hence \ e

Zs — Z+'yoa . .‘. Ny
— Linr (o _ (a5
= %[X‘i‘ Y)""E\nrxz( x+0u)‘J 20_}_@
, Es NN s ]
= HX+Y /
WX+ )+g:m(az+oy)[v,£ AR
= HX+Y)+HHo,+ o, MEEs nao,)- (14}

Thus el Headistantstgnithe (;éllehlation of the sct (Z,) bave
been determined. X Ny

For the application of this method to the general case of
m given sets of observatioms and for more general forms of the

function F, referencedhay be made to a recent paper.f
i 3

Linear Corrdation.in General

Suppose that.
PP 'Q’\ 3 x}!xzs---;xns
“\z\ Yi:Ya-oo yn

is a,%'(ve’n system of data. We may inquire which member of

the class of hypothetical populations z cos «—+y sin x = p, where

¢oand p are variable, will provide this system of data with the

<) Breatest probability.

Let us suppose that (X,, ¥,) is the point on this line to which
(%, ,) is an empirical approximation, and that the errors in the
placing of z, and y, occur independently with frequencies deter-
mined by the same Gaussian law, Thus the probability of an
error X,—x, is proportional to exp{—h%(X,—z,)?} and that of
an error ¥,—y, is proportional to exp{—A%(¥,—y,)?}. The proba-

t H. Levy and J. Q. Gascoigne, Proc. Phys. Soc. 48 (1933}

el o e e
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bility of obtaining the whole set of data ig therefore propor-
tional t0

exp{— (X, — ) lexpl— AR =g} - exp{—PAE =2} <

explo T, — ) = exp| i 3 [(X—a )+ Y]}

T this is to be a maximum we require that
2 [(Xr'_xr)z"'l‘(yr—'yr)z]
shall be a minimum.

Geometrically, this expression represents the sum of the),
squares of the distances of the points (x,,¥,) from the .cqrre-'
sponding points (X,, ¥,} on the line N

xeosa-ysine = P. w'\{' (1}

Now unless (X,, ¥,) is the foot of the perpendicular from
(x,y,) on (1), the given expression will cgrlsa,inly not atta,i-n
ifs least value. Since the perpendicular ftom (.4 on (1) i8
of length x,cosa-y,sina—p, We havénbe determine and p

g0 that S (&, cos -+, siﬁ"'a‘;p)m»rww.dbraulibrary.org_m

i8 a minihum. We thus requi]:qi: N

> (x,.cos~og-|—‘g},l gina—p} = 0 (2)
and S (. cos a—{—ynginﬁ—-p)(m, sin e —, cosa) = 0. &)
Equation (2) may bp\ﬁ“iften in the form

,&-coa ot Zﬁlsina—-p = 0,
4 n n

O ,
which shoss“that the mean position (X, ¥) of the points
(@, ¥, lié§0"n {1). Writing, as before, 2, = X+é, =Y+
sothaty £, =21, =0, equations (2) and (3) become

~

\”\; - Xeosa+ Ysina =, 4
% (£, cos -t 7, sin a)(£, sin a7, €08 a-- X i a—Yeosa) = 0,

or (costa—sinta) 3, £ 7, = SiDaCOBX S (&7, {5)
whence tan 2u = E%é% (6}

Thus the required hypothetical population is given by
(z—X)eosa+{y— Fieine = 0, )]
where o is determined by (6).
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Eliminating o between (6) and (7), we find that (7) is one of
the pair of lines whose equation is

c=X)y=Y) _ Té& "
(e—XP—(y—YP 3 (97

It will be observed that these lines arc the bisectors of the
angles between the regression lines of = on y, and of y on 2;
one of them determines the most probable and the other the
least probable of hypothetical populations represented by.Jines
passing through (X, Y). The required line is the hzsec(or of
the acute angle between the regression lines,

When ¢, = g, it follows from (8) that the hne I? has the

equation y—¥ = +{z—X). ) j.'

.

The Gaussion Law for Twe Variables: Comelation

We can approach the problem of cor.t@atlon in the following
way.

Let py, 1, be the deviations of two sets of quantities from their

TBSPecwww@ﬁMﬁamgﬁy%}gmse 01 “and %, are each determined
from elements ¢, e, them&ielves also deviations from their
means, and distributed a’bout these means according to the
Gaussian law, buppose

My == ae\—!—be2 or e, = An+ By,

T2 ¥\CM1+1362 € = B+ 87,
Then the probability of the oceurrence of the s ﬂ]multanev
ously withiu‘the ranges (e,, ¢, +3¢,) and (e, e, 8¢,) is

i 3
’&i.exp(—hf €2 de, fexp{—hg €2) de,

o iy b,
:'\" V" -2 CXP( B e3—hg €3) dey de,.

\ If for the 's we substitute then' values in terms of the 7’s a8
above, the result will give the probability of the occurrence of
the two charaeteristics 7, and 1, in the ranges (y;, 7y4-3mb
(2, 9o+ 81p,), viz,

exp{—(Ani+2umy 9y+v93)} 871 89,
an extension of the Gaussian law.

We are now in a position to generalize and interpret this
expression.
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As before, let », and 1, be the deviations of two measurable
characteristics cach from its mean. The problem is to represent
the linkage that shows itself, if at all, between the quantities
y, and 7, Let them be determined by the eorresponding devia-
tions of o number of contributory elements, ¢, &,..., €, €ach
from its mean. Then

= Gy e+t T En
7y = b e tbyeat o Fbnem: Q)

Let us assume that each of the ¢, contributions conforms te%,
the Gaussian law of error with precision constant k,; then the ™
compound probability that the €'s ki respectively angl‘géﬁﬁul-
taneousiy in the ranges , e\

S
{e1, € +0¢€q), (€ €2+8€2): T em-I—Séi,;}?
is R = Aexp(— 2 k) d‘ldfs-;ré%’p
sinee they vary independently. N\

In this expression substitute for ef and « in terms of 7
and 7,; then the compound probability thatwiy - dedudiblig {forg. in
the range (7, 7,+8m) and ('7?2,:733’4‘81]2}, respectively, as well
as that the remaining €'s shouldilie in the ranges

(€3, Ea'i’..ﬁs.{s)! N Em‘i'afm)’
is of the form e\J
N\
(48 ; Be~U Sny Sng Bez. Dep
where U is the s}“um“ of
,~\'a)"a quadratic function of 7, and 7,
,;\\"('ii} a quadratic function of €g,--r €
N N (i) a function linear in 7y, e € S

MI;f“Q be integrated with respect to the €'s from 40 t0 —®0
the result will give the probability of the oceurrence of the two
characteristics 7, and 7, in the ranges (15 Mo OM): (12, ne+872)-
Finally we obtain _

P = Cexp{—3(; n3-+2C ™ 12+ Ca 73} om 87,

clearly an extension of the Gaussian law of error. I % a,-nd
7y Were quantities that could be chosen independently with
standard deviations o, and o3 respectively, then we should have
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as the probability of the occurrence of %, and %, in the given
range
P=

7t n
ex sio—
2na, oy P( 20 20’2)
The presence of the term %, 7, in the quadratic expression brings

out the linkage between the two quantities.
Write

i+ 20 me+Con = G, ?}1+ 7 mz] SO N

AL a8y
= G, 7?1”!‘_“7?2] 'i‘{az_:’ h}?z

(N0t
=G 7?2+C "]‘1] +\[ W 12 7?

. O3 1 3 v
Now write O— 2= _ (12t
o~ YgTa
and r o —— Gacy)
VIGE:)
www . dbrpulibrary.org.in 3
Thus PoUCAZREN L L o),
] 1 RS 3 2
of RO

Moreover, since P is_fo*he a probability, when integrated
with respect to n; and’, from 4 oo to —oo, it has the value

unity. &\J
Hence P N o ®
This lntggra] 15 evaluated below with the result
&\ . 2
L= 2T 200, 0 f(1—72),
AN WG G—CYy) 1

\\3 Kecordingly the law of error takes the form7
1 1 1 T a2y 2
T =M e . "?z)
()4 1] (U— L T IE
oy oy oy (1—72) p{ 21—9) (G% 0,0y +U§ J
T In this connezion we may note Mehler's series for the correlation funetion

ad 1 {2 — 2roy 4™
(1=ryboxp( — 5 Ty )

2
= (i) L@ B ;—.sz’ﬂf‘i‘ﬁ"'}'
where H (2} is the Hermite polynomisal (see p. 138).
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Tt is clear that when there 18 no correlation (r = 0), L.e. When
the term 7, 7, is absent, oy and o, become simply the standard
deviations of the =,'s and 7p’s In that case. That they still
bear this interpretation even in the case of linkage may be seen
from the following considerations.

Write  , _ (exp{—HC,a*+2C,ey+ 0oyl
Then from the integrals evaluated pelow we have for the

gecond moment of x ~
s 20, C \
I =y 2 :___2___: 2, " 3
= [ =g (9
© 2 240, C
2 - LY = 2.“ <N
L‘ B ~—J;s -—£ v dxdy (Ol 02"’ 0%2); 0:2'

Similarly, N
J = ity — T
ay &2y = G o—QRp

1

—_—gy — &
X

The integrals I, and I are the sGuares, of the standard devia-
tions of the 7’s while J is the sun},pﬁ,the praduehs Brdisibrary org.in
: J oY J
Accordingly, = ?;;z.;—- JLLY
or for computational pugposes we write

71

K Zmme
O T i 2 i)
Tt remains bo'evaluate the integrals referr
Considg;(}
N = oxof — baa?—Dhay-+ byt)} dady.
e ', P

ed to above.

N —wm —

\’ B A2 A X
\”N,UW qat— 2hey+by? = a(ﬁ?-ay) i
where A = ab—h®
® f
Also : J' exp(—at?) dx = _“‘_g_
Thus w

0 27 lé 2
F expttust by} e = 5\ "2 ]
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Hence -
{2 1A ,
4 “J'&" f eXp(“EE?’)d’y

_ [pm Nm  m_ 2m
T Nae AT WA Jab—hy)
2a

By differentiating under the integral sign, with respect to

a, k, and b, we obtain : N\
Fa Db .\\\
2 — gx®—- 2 ey o ——— KW
i L _L 22 exp{ — Hax? —2hiry -+ by?)} daedy @)
IS i

1 g 2 ; 1“7
—'!; ) i oy oxp{— L{aa?— 2hay-+by®)} dxdf""mz\‘(ab——hz)*

[] ytexp{—blan® —2hay-+by hdedy = s
1] R

Tests of NRjsly Fo¥ St Saprples
One of the most importgm’ﬁ' tontributions which statistical
analysis has made to experimental practice lies in what are
called ‘tests of signiﬁc@ncé’. Suppose that a series of measure-
ments is made of a quantity which in ‘normal’ circumstances
would have the valug'm. From a study of the observations, can
we say that thege are themsclves normal measures of m? If
not, can souig measure be found to estimate the degree of non-
normality»For example, a collection of trees is sprayed with
an i e"g?tieide, and after a lapse of time the number of insects
upofisthem is counted. A corresponding series of unsprayed
‘ j:\afe;és (controls), of equal number, is also counted for ingects. We
\”\3 may ask whether the difference between the average number of
insects per tree in the two series is sufficiently great for us to
assert that the effect of spraying has been significant. From
the point of view of probability we may regard the problem in
this light: we may say that there are n numbers %y, Zg--» Ty
whose average is #; m is the mean to be anticipated if n were of
infinite extent and if no factor had operated to disturb the
equilibrium of the series. In asking, therefore, what is the
significance of —m, we are really inquiring with what proba-
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pility one might expect & deviation of & from m to have as large
a magnitude as this, under so-called ‘random’ conditions, i.e.
when the numbers @y, Tg,...; Ty 8I€ chosen about m according
to a ‘random’ law—for present purposes the (Gaussian.

Onece that probability has been found, it will be possible to
express in any given case the significance of the deviation in
terms of the probability that it will arise at random. If it is
very probable that a deviation of this amount will ocour in a
random sample of n, then there is little experimental signifi-
cance in the deviation found; and conversely. It should be
remarked that, in expressing the significance of the deviation ),
in this way in terms of probability, we are really referring if"to -
the significance of the probability—a matber which, as webave
previously remarked, is to be decided finally by t,hefexperi-
menter himself. It is clear that a corresponding inyestigation
of significance can be made for the probability\of ‘ocourrence
of a deviation in any other typical constantfrom that of an
agsumed infinite population. o\

Let there be a population, in numbe}' oy dnggﬁgga%q?gggg% rgin
to the normal law . ‘:f(: \ y

S (F—m
v= Wef?(’TaT‘)’ .
where o is the standard dg;(i;a,tion of the population and m is its
mearn. \J
m}}}s 2 in number is drawn from it, having

Suppose that a s vi
magnitudes &, Z&H Ta- We can write down the probability

that the memkess of the sample should lie between x; and

2y +4-dxy, mgﬁd 4y g0, Ty 8D x,+dz,. Thisis
o u )
S LA O o (,(_?:_”})_)x
e :www}e"p( 52 Jog@) T\ 2
@ 1l N (2, —m)?
O « mexp(ﬁ — ) dary Ay 2 e
ie. P= A exp L s (xr—-m)g) i, day... 0%y
e
Thus

P= Aexp(—giﬁ[z (x,——£)2+n(:f—-m)2]) di, dg.. A%y, (2)

where A is a constant and & = S x,{n.
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‘We now represent the sample by & point P in space of »
dimensions having coordinates {z, %,,...,%,). Then

x1=$2=...#xn

is the line which is equally inclined to the coordinate axes.
The perpendicnlar distance of P from this line is given by
PM? = (23— &)+ (tg— &P+ (o, — T

where M is the point (E, &,...,©). ~

Thus PM = svn, where 8 is the standard deviation gof tite
sample. Hence, given & and, therefore, M, for a fixed s, thep‘omt
P must lie on a sphere of (n—1) dimensions with cchtte at M
and radius sva. N

An element of volume in this space may thug B expressed in
terms of the variation of Z, namely d, and_the wariation d{s»-1)
in surface area. Thus the volume elemenf\can he written as

Csn-2dsdz, (O

where Wwiw sthoaibrsstgntg.in .

We now see that this represenﬁation of our sample, together
with the symmetrical natuzé of the expressions for « and s,
enables us to replace (2} byt the formula

P = Cgn-2 ?XI{.T —2-;2[2 (a:f—a':)g—i—n(z'—m)zj) dsdi. (3}

This represents the probability that & sample will be drawn from
the populatiox, ‘having a mean lying between & and #4-dZ, and
a standard deviation between s and s-+ds. It follows that,
given ﬂ;@ standard deviation s, the law of distribution of
sa{n.ﬁks of the means is represented by the normal curve

~ . z == zuexp(h—%(:f—m)a) (4)

distributed about the same position as (1), but with standard
deviation ¢/vn.

In the same way, if we regard Z as fixed, the law of distribu-
tion of the standard deviation of samples is given by

2 .
Y = Yo s“‘”BXP(-%)- (%)



Chap. IX,§2 DETERMINATION OF A POPULATION 187
The constant y, may be found as follows:

Let o a
== M ..._ﬁ
” Djs exp( 53 ds

ol et
= j -—-exp( 2) ds
0

= Zp-1) O
upon integration by parts. Henee we obtain Oy
P\
2\ jin-2) D
I _,= (%) (n—38}n—5). 11, ) f"}‘.

0 $n—2) O
or I, = (H) (n—3)(n—5)...2 I3
according as = is even or odd. 7 \;

Evidently we have I = J( )a, and\I = —. Since the
O Ywww. dbraulibrary.org.in

area under the curve (5) represents the total frequency N of the
population, we obtam

¥= {n—3) (n~—5 3\“/2{ )ﬂﬂ#n&'“ 2eaxP( ;z:)

when » is even, and , . i"} (6)

NS p\io-) na?
¥=m= 3)(,?3:‘—“’?'))...4.2(;_2) s BXP(_z_a_z)

when % is od
In asi 1131' manner we obtain the value of the constant z,
in (4). gtﬂtmg by « the distance of the mean of the sample

from the. mean of the original population, we have
AL

@ 2l 7 na
\/ N =z f exp(#%@) de,

—a@

ie. N = 220/‘/(%)0.

Thus (4) ean be written as
x
z = % gexp(—-‘n—x—). (7)

2%
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Now introduce the variable { defined by

L = as. ®
The probability of obtaining a value of s lying between ¢ and
s-ds is, by (5).

&tds

1
sh—Pexp 2 Vs
2g? y R
'Rz - 1 — ~ . — K28':1.-2‘33,(1)(,_... EF) ds. ~
f gn-2 exp(—-ﬁ—a) ds N
3 2¢ )

The probability of obtaining a value of « lying betwva,(,n x and
z-+dr is, by (7},

= 2 lex p( m2)d J_ _expf_ )s d.

This is also the probability of obtalmng{asvalue of { between ¢
and {+4-d{ for a given value of s. & ™

Hence t}‘}\p ﬁ?@bﬁp&t{ 9,@ gfptammg a value of { between {
and C+d§, while ¢ L etween o and x+dzx and s between &

and s-}+ds, is
5P — Yogns _”_i J” Lexpl 25 4
ol exp( 202) ds 5o —expl ~ |8 dg

~\
_ _\an lexp(-——(l-{—i,’z)) dsdl.

It follows that the probability of obtaining a value of { between
{and +di,‘ fbr any value of s iy

- P = i ;y,!?_ 7—1 il 2y} dsd
u.f\ mu%fs exp(- a1+ sl
~\ ﬁéhce by (6), we obtain the results
3 1n—2n-—-4 5.3
P = - 2y -t
2n—~3nm ’4.2(1_’“5) dé (??, (‘Jdd)

. %)
T AL (neven)

We note the very remarkable fact that the formula (D) does not
involve the unknown constant o: hence its practical importance.

Now write = tané,
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Then, from (9), the probability of obtaining a value of { lying
between ¢, and —{,, say, is

1 2 4 5 tan-'(£,)
= 1B eR—2 09 n-2g
2n—3n—5 4 2 cos™=% df,
tan-1{—,)
, omd 4 tan-1({,)
n—2 n—
or P=-_— ... cos™ 20 df
Tn—3n—5"3 y 4
t"—n"(‘”;l} '\

according as n is odd or even.

For further information on this subject, reference should be,
made to ‘Student’, Biometrika (1908), and R. A, Fisher{ Bio-
metrika (1914-15).

Using the above results we can construct a twofold table
from which the significance of a variation of C"‘}s}etween +&,

(i.e. of x—in) can be determined for a ginQ;value of n. For

8 K9
use in practice, Fisher has found it ebnivenient to replace
{byt = {vn = %_S—mw’n. The vah}gs:of t, Franddana @Veg B-g in

Table IV of Fisher's Sta-tisticqu;w ethods for Research Workers,
where it is to be noted that'the n therc used is less by unity
than that taken above, and\that m is assumed to be zero.

&

Other Tests for Sa’gm;fémice

In the investigation given on p. 160 we have measured the
significance of, & pair of extractions by comparing the proba-
bility of obaining such a pair with that of obtaining the ‘most
likely’ pairy “However, this is by no means the only method of
estimafing significance: consider, for example, the following
problem. { .
~Suppose that we have 2 population of black and white balls
it an unknown proportion p : 1, and that we draw from it two
samples, each consisting of 6 balls, which together contain
8 black balls. Thus, if the first sample contains 7 black balls,

Hlack White

¥ G—r

8—r r—2

% Trwin, Metron, 12 {1835), 73.
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the second will contain 8—r black balls. The probability of
obtaining such a pair of samples is
G (1—p)* e, p*{1—p)2,
where r may asswme all integral values from 2 to 6.
In the accompanying scheme we give the values assumed by

the function
P(r) =CCy,
ag r varies from 2 to 6. O\
- ¥ Pir ) ¢ \:\
2 15 O
3 120 N
4 225 R
120
8 15 AV

It follows that the probability of tibt\-aining a table for which

- db libr org.i L)
P = 2 lgfww TAaull la;‘y Dlg n \ "
15 / S P(ry =15/495 = 1/33.

F=3 A\

The probability of obtainiiy an equally probable or less prob-
able table is 30/495 —=2/33.

The same metho’d"ﬁa}y be employed when the two samples
extracted are no’t\})f"equal size. Thus, suppose that the first
sample contaifisya fixed number ¢-b of balls, and that the
second contails a fixed number ¢+d, while the two samples
togethc;\:@ﬁvays contain #+-c black balls. In the table shown,

& N\ Black | White
S atbr| -
\”\; c—btr | bid—r

the number r evidently cannot cxceed the lesser of a4-b and
¢~+d. The probability of obtaining such a table is

a+d 4
q' o Ob+d—r/a+b+c+d0a +et

Consider, for instance, the following data, which give the
number of cases of measles prevented and not prevented by the
use of serum in each of two different schools.
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|| Prevented ‘ Not prevented

_Schclol 1 | 26 ; 2
School TT 61 l 2
Totals | 8T | 4

The possible tables which may be enumerated are represented
by the scheme

in which r may assume the values 0, 1, 2, 3, 4. We now calculate®,

the corresponding values of the function O
Pr) = 2090y . AN\
These are shown in the accompanying table, m\: ’
r Pir) v
o senees LAY
U rameos 0O

2 H 738,234 QO Yarww . dbraulibrary . org.in
I

from which it follows t-ha(f
SO\
iP(’:") = 2,872,670,

‘f=

Hence, the pronghﬁiﬁty of abtaining a table as improbable as
or less proba,ble:ﬁfsm the observed one (for which r = 2} is

N
PO FP(2)+P(3)+ P4 _ 1,560,762

T TEme
R 2.

NS

”‘.§;‘a further illustration of how the significance of samples
h}awn from a population can be reduced to a comparison of
relative probabilities we examine the following problem.{

"Two populations each possess a certain quality in unknown
proportions p; and ps. Samples of magnitude N are drawn from
each and found to contain z, and z, respectively of the quality
in question. We inquire what is the significance relative to the

{ See Jefireys, Froc. Camb. Phil. Soc. 31 {1935}, 203.
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possible values of p; and p, to be attached to the difference
@ —x, found from the two samples. Itis clear that the guestion
becomes important only when x,—z, is small compared with ¥,

Accordingly we examine the respective probabilities that
samples x, and z, will be drawn from the two populations on
the assumptions

(1) that p, # p,,
(%) that p, = p,. Q)
In the ease (1) the probability of #; and , successes in N trisle

each is, by Bernoulli’s Theorem, R \)
4 = ‘NOI‘ PI{1—py)¥-7 X NCx.P%’{l — PN % i
Nz ()

= : 2] — Nz gy PO ‘ Norg
- ! (N—xl)! (N——-xg)!pi (1=py) pﬁl 7o) ’

Now, prior to the drawing of the sample, 25 ard P, may have
any values in the range N
0 < (p1,75) KN
all, it wilkbhamssambes;ywith inqual probability.
Hence, on this basis the probability of drawing two samples

S
%

% and 2, is RN

11 [
J JA dp, dg,.
00
N e mln)
ow 2 B 1 — p)n — )
Jabi—rr =gt
Henee X
1 AN 1
J‘pili\{.:pl)év-x1 dpl f pgs( 1 _..pz)a'\r—.rs dpz
:"\:s. D
& = Al (N—a) (N —ay)!

(N DTN+ 1)

\‘ I the case (2), where p, == p,, the probability of drawing
samples x, and x,is

B = NC:.PT‘( l—p)¥—mx NCI‘ Ph(l—p,)V-=
— (N1)
2y (N—2) [ {(N—a,)i”
Again p may be assumed to range with equal probahility
between 0 and 1.

:flf{—zg(l _,_Pl}n\l—zl—r,_
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Hence the probability of drawing the two samples in this
case ig

1
Jdel.
0

Now

1 .
sl ] . \EN-Tr—T2 — (2, +2) (2N —r =)

In 4 and B the cocfficients not involving p, and p, are identical.

Hence we obtain the resulb: QO
Probability of (xy,%,) arising when p, = P L)\
Probability of (x;,%,) arising when p, 7 pq O

(b 2N =2y =) (NEDE N
(2N+1) xllle(A\’_xll!gz\l\l(:xg)!

Assuming that N, z;, and x, are all large nunibges, by using
Stirling’s theorem we can approximate to thigwitio; it becomes

N? .Nfi‘i —a,)?
N A

- expl — L .

! [ — a2, — ¥ (2N —

N{n{x1+r2)(2}:\' . xl_ 't-‘)} . (?Ifxﬁ (www.dlbl'gt?albral'y_org_in
The problem of discriminating between the values of p for the

two populations arises only whe‘n".%\‘?——a—;% is small. For, by the
,r:’. 4 4¥
method of Maximum Likelihood, a;/N and 2,/ are the values
of p, and p, for which a‘t‘ﬂ?}(l x, are the most probable gamples.
Accordingly let us wn\t\‘
> ez
R g(ﬁg‘f“@a) =p

{ s
L >

and “\\ Ti_T2 -5
‘\‘,." ‘f\‘.'_:\;r - p
'I‘hcr}j;ﬁmdl_\-', we may say that the relative likelihood cquals

(NS . . . .
Probability of drawing (. x,) when the populations areidentical
rubabilit-yoftlrawing {ry. ;) when the pepulations are different
N oon Napt
}_ ox [ g\ ay

—_ — 1 , —[25p?
— [4-@;(1-)}) _ L exp(—L28pY,

l_vip(]—-p) T
N
RTIRTY
If 4, the actual difference hetween the two successful drawings
1260 Q

where IR
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@, and w,, is constant for a population of increasing size, then
clearly L?&p® does not depend on IV and the exponential term
remains constant.

Thus, for a given difference x,—z,; between the two readings,
the relative likelihood that the two populations do not differ
increases directly with L, i.e. with N*, When p = 1, L = N1,

Ex. 1. For a given diffcrence @,—#, in the samples of given size N,
find the probabxhtyp for whieh the relative likelihood, that the popula-
tions are identical, is a maximum, A\

Ex. 2. Suppose that two samples, 160 each in number, aredfawn
from two bags containing black and white ballz with the f’t»llbwmg

results: \

' Total | Biack | White |, L

First samplo | 100 | 41 - 09\
Second sampla| IGOi 49 o8 )

We have O
_ 1 41+49) Y\
N =100, p= 2( 100 ‘.“.{M"’
www . dbraulibr arg,rgm.g_,l N\
g 100 =008,
L 100
t Al
L = X045 655 100 approx.
Thus T == 10,
Hence \

Probgbility of 1dsqnt1f,y 10 w10 .
Probability of diffetence i exp(—100% 0-08%) = —,—-exp{-—O 64),
Le. it is appro«gunately three times more probable that the two popula-

tions are 1;{ntacal than that they are different.

4 \50
A EXAMPLES ON CHAPTER IX
Ex: 1. The probability of landing a shot within the annulus of radii

N .24 .
meand 4 dr on s target s Tb exp{ —A%?) dr. A thousand shots are fired
3 T

at the target and 500 are found to lie within 1 ft. of the centre. What
is the number of shots expected to lie within 3 in. of the centre, and
what is the least distance from the centro within which one shot is likely
to he found?

Taking the unit of length as 1 ft., we bave, by hypothesis,
1
2h

N
o

e—hire adr .- é,
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or Erfh = 0:5.
Thus b = 0-48.

Hence, the number of shots likely to be found within 3 in. of the

centre is 3
1,0004

- et e,
T

The least distance # fromr the centre within which one shot is likely to
be found is given by

1 ,000?&
“r

e e = 1,
0 N

Ex. 2. The Method of Least Squares. On p. 168 we have derived tfis
wethod from the normal law; the same result may, however, be obthmed
without such an assumpf_mn by introducing the coneeph, uf wetght.
Suppose that x, ¥, 2... are n numbers and that L, - G; 'c—i—b‘l gz,
Ly = aqyw4byy-tcozton L, =a,xLb yte,2+.. &> n) linear
functions of @, ... with given coefficients, for which \7&; ave the esti-
mated values uy, #,..., -us Then for the expre s,emn

=LA Dyt Ay L
whero the A's are constant, we shall have thg:\"&}”ﬁﬂ: fEaulibrar
Areeg F A, uz—l— —i—A. -
If we choose the A’s so that ’
Ayt g+ Ar, =0, "’A :5 FAgbot . Ah =0, ote.,

then L will reduce to z, m “hlch case A uy LA uy+ ..+ A e, 15 an
estimated value for x.

 We now define the weig}'ft. W of L, for any sct of values of Ay, Ag,...,
by the expression \

y.org.in

O Lo AQ+AQ+...+A2.
2
Further, we m\ﬁume that the best estimate for # s that for which W is
& maxiouei\ This gives us the condition A, dA, +A; dA,+ ...+ A, dA, = 0.
It WoR0 ve the equation so obtained, using the method of undeter-
mined ‘In‘lllt.lpllf‘l“s w find for @ the value that would have been derived
fl‘om tho Method of Least Squares as formerly explained.
chur further details, as well as for justification of the present assump-
10115, the reader may consult Whittaker and Robinson, The Caloulus
of Observations, § 115,
Ex. 3. The speed of a train is recorded every second by an instrurment
which in reality gives tlhe average reading over the previous T scconds,
If the recorded speed u({¢) is found to follow the formuia

uit) = at*+-bitc,
determinn the true speed »(t).
4260 02

QY
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Here
0

[
1 . ]_ fid 2 . npe = ﬁ
w(d) = ?J‘t(t—x) dx == 7 f e Doty die, where I = T
Iy =T
1{319]” 1
=5l 2= =5 (1 e TPt
D!, TD
1 ( Fipz e )
Il U7 K T St L)
T qefe )‘ 2\
L 1 E U .
Hence oA\
D 7pz o
o0 = (1222 ) O
N
TD T A
= (1475 g Jues R
T.,. . T, v
= u{i)+§% (f}—l-—l'g‘“ {£)... )
T >
= H(H— ) u (L), approxlmat\‘
WW, d%l aulz%ral yorgin O\
Hence « \J
»{t) = atg—i—bt—i-c—l—E(Zat—l—b)-f.aga
180
= att 4 (b FaT YA +bT+
"\

Ex. 4. Show that, if ity H\th(‘ recorded measarement at time £, where
in fact it is the aver ﬂgf‘\\ar a period 21 lying evenly about time ¢, then
the true mcaburernen‘t 1;(!) s given by

(1)} .\w(t — 3 TR (1) 4 5 Thulo(1)...
’,\— w{t) —F T2A2u () + 1 TP A%(l) + 51 AMll)...

0 ,\\ 0 0 0 Ex. 5. Inasquarc lake depth sound-
A\ [ [ ings are takon from a boat at a series of
o \j‘ > 1'% 1-8 16 —|¢ Points forming the comners of the 25

#quares into which the surface of the
lake is divided. The errors in placing
the boat in each position for sounding
are given by the law Ae7*, where # is
O I8 22 20 17 40 4he aceidental dovietion from the trie
position. If the figures in the diagram
O- 1.8 20 22 1.7 -{0 are the readings obtained, ind the true
distribution of depth.

}— -8 21 1.9 16 -0
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Ex. 6, Show that, if different sets of ohservations cach salisfy a

. i
. Gaussian law of the form Te—hzfz, where the £’s may adopt any values
T

oceurring with a probability given by % e then the law of distribu-

A

tion of the z's is of the form ~——

T ES O

‘) 3
Ex. 7. For a probahbility distribution of the type i (?—ll—)—lé-}-g, find the
7 (22|

mean value of x and 22

*

O

N

e L e

N/
a N

\
l(& :
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2 z
2 )
Erfa = Va-rfe dt.
o

Erfx x Erfz | z ' Erfz
002256 | 102 | 085084 202 099572
004511 @ 104 | 085885 1 204 0-09609
006762 | 166 | 088614 | 206 0-9964
008008 | 108  (8TE33 | 208 090673
Pgl1246 | 110 | 088021 | 210 099702
013476 | 1-12 | 088678 : 212 090728 A
015695 | 114 | Q88308 | 214 099753 ¢\
¢L7001 ! 116 | G-8%010 | 216 099775 72N
020093 ¢ 118 | 090484 | 218 099795 \.
GE2WT0 | 120 09WE1 | 220 | 099814
024430 | 222 | 0901553 ¢ 229 | QagEal
026570 | 124 | 002051 222  AN8UB1H
028600 | 126 | 0u2524 226 (N099561
030788 | 128 | 092072 © 228 N JO-hosTi
032863 | 130 | (93401 | 2:30 0-99886
084913 | 132 003807 @32 | 090597
036936 | 1-34 & 084191 4°8B34 | go0n06
i 0438933 i-ge a-g.iggg M gvsa (09015
0-40801 -38 | ooagoe )l 2u8 0-59921
byaurktorarylapg-Ing.05228° ' 240 | 0u0e3l
044747 ¢ 142 | 93538 242 003938
046523 | 144 MNgO5830 | 24 090914
048488 | 14608 090105 | 2448 £-90950
050275 | 4B 046aGs | 248 0-90955
;052050 | 480 | 0966L1 | 250 0-99054
063790, \I1-52 | 00g84l . 252 0-99953
0-5549 154 | 007059 | 954 C-099067
057162 Y 156 | (97263 | 256 099971
%92 158 | (97455 | 258 0-50974
L O3 | 160 | 097635 | 200 049976
S 61041 | 162 ¢ 007804 | 262 (00079
s 063459 | 164 ¢ 007002 ¢ 264 0-09981
66~ 064938 186 | 098110 266G 099983
066378 | 168 | 008243 , 268 | (-90985
087780 | 170 | 098379 | 270 O-0DOBT
069143 1 192 | Q08500 | 242 0-99988
070468 | 144 | (98613 | 274 099950
091754 | 178 | 098719 | 278 005091
73001 | 198 | ooss1y ¢ o2ags 040092
074210 | 180 | 088008 . 26D 095092
075381 | 182 | 088094 | 282 . 059993
076514 | 184 | 009074 | 8L ¢ 059994
077610 | 186 | 005147 | 246 0-99905
0-7886H | 188 | 099216 | %83 000995
079691 | 190 | 099279 | 240 0-90996
CBOGTT : 188 | (00338 . 202 090006
¢81627 | 194 | 099392 | 04 090997
082542 146 088148 2% 0-39007
083423 | 1085 | 099489 | 28 0-00487
084270 | 2:00 | 009582 | 30 099098
3133 | 0-H99990
3458 | 0990999
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Random wallk, 81-2, 131.
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Sample, 29, 68-73, 79, 146. a
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1 Bimpson, §-6. "4 ‘:

Standard deviation, 102
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— — for Poisgoriis/law, 143.
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18, W

. Statistied; M,

; Stlrlmg 3 theorem, 5, 44, 637,

l§t.ud-'.‘.1:‘1‘c.’ 189.

)

£ Tartagha, 2.
| YI'chebycheff's problem, 53-4.

— theorem, 117.

Telephone problem, 144,

“Treize’, problem of, 4.
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H15-17.

Venn, 10,

Waismann, 33.
Weights, 61, 77, 115.
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